Molecular-Level Functional Magnetic Resonance Imaging of Dopaminergic Signaling
We demonstrate a technique for mapping brain activity that combines molecular specificity and spatial coverage using a neurotransmitter sensor detectable by magnetic resonance imaging (MRI). This molecular functional MRI (fMRI) method yielded time-resolved volumetric measurements of dopamine release...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2014-05, Vol.344 (6183), p.533-535 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 535 |
---|---|
container_issue | 6183 |
container_start_page | 533 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 344 |
creator | Lee, Taekwan Cai, Lili X. Lelyveld, Victor S. Hai, Aviad Jasanoff, Alan |
description | We demonstrate a technique for mapping brain activity that combines molecular specificity and spatial coverage using a neurotransmitter sensor detectable by magnetic resonance imaging (MRI). This molecular functional MRI (fMRI) method yielded time-resolved volumetric measurements of dopamine release evoked by reward-related lateral hypothalamic brain stimulation of rats injected with the neurotransmitter sensor. Peak dopamine concentrations and release rates were observed in the anterior nucleus accumbens core. Substantial dopamine transients were also present in more caudal areas. Dopamine-release amplitudes correlated with the rostrocaudal stimulation coordinate, suggesting participation of hypothalamic circuitry in modulating dopamine responses. This work provides a foundation for development and application of quantitative molecular fMRI techniques targeted toward numerous components of neural physiology. |
doi_str_mv | 10.1126/science.1249380 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9972887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24743830</jstor_id><sourcerecordid>24743830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-3ee68eae257f36cb3e61d5c8fbabdc3b70e90026682968577a0cca89fbd7230a3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS1ERZfCmRMoEhcuacd24o8LUlUorbRVJT7OluOdBK8Se7GTSvz3uOxStZxG8vvNmxk_Qt5QOKWUibPsPAaHp5Q1mit4RlYUdFtrBvw5WQFwUSuQ7TF5mfMWoGiavyDHrJFKgOIrcnsTR3TLaFO9xjscq8sluNnHYMfqxg4BZ--qr5jLQ5lTXU928GGoYl99ijs7-YBpKMQ3P5SOorwiR70dM74-1BPy4_Lz94uren375frifF27thFzzRGFQouslT0XruMo6KZ1qu9st3G8k4AagAmhmBaqldKCc1bpvttIxsHyE_Jx77tbugk3DsOc7Gh2yU82_TbRevNUCf6nGeKd0VoypWQx-HAwSPHXgnk2k88Ox9EGjEs2tGWUcwoNK-j7_9BtXFK59y8FDZQ_54U621MuxZwT9g_LUDD3YZlDWOYQVul49_iGB_5fOgV4uwe2eY7psd5wxYH_AU66nCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520401093</pqid></control><display><type>article</type><title>Molecular-Level Functional Magnetic Resonance Imaging of Dopaminergic Signaling</title><source>MEDLINE</source><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Lee, Taekwan ; Cai, Lili X. ; Lelyveld, Victor S. ; Hai, Aviad ; Jasanoff, Alan</creator><creatorcontrib>Lee, Taekwan ; Cai, Lili X. ; Lelyveld, Victor S. ; Hai, Aviad ; Jasanoff, Alan</creatorcontrib><description>We demonstrate a technique for mapping brain activity that combines molecular specificity and spatial coverage using a neurotransmitter sensor detectable by magnetic resonance imaging (MRI). This molecular functional MRI (fMRI) method yielded time-resolved volumetric measurements of dopamine release evoked by reward-related lateral hypothalamic brain stimulation of rats injected with the neurotransmitter sensor. Peak dopamine concentrations and release rates were observed in the anterior nucleus accumbens core. Substantial dopamine transients were also present in more caudal areas. Dopamine-release amplitudes correlated with the rostrocaudal stimulation coordinate, suggesting participation of hypothalamic circuitry in modulating dopamine responses. This work provides a foundation for development and application of quantitative molecular fMRI techniques targeted toward numerous components of neural physiology.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1249380</identifier><identifier>PMID: 24786083</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Animals ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Basal ganglia ; Brain ; Brain Mapping - methods ; Brain research ; Contrast Media - chemistry ; Coordinate systems ; Cytochrome P-450 Enzyme System - chemistry ; Cytochrome P-450 Enzyme System - genetics ; Dopamine ; Dopamine - metabolism ; Dopaminergic Neurons ; Electrodes ; Imaging ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Medial forebrain bundle ; Molecular chemistry ; Molecular Imaging - methods ; NADPH-Ferrihemoprotein Reductase - chemistry ; NADPH-Ferrihemoprotein Reductase - genetics ; Neurology ; Neurons ; Neuroscience ; Neurotransmitters ; NMR ; Nuclear magnetic resonance ; Nucleus Accumbens - metabolism ; Rats ; Rats, Sprague-Dawley ; Sensors</subject><ispartof>Science (American Association for the Advancement of Science), 2014-05, Vol.344 (6183), p.533-535</ispartof><rights>Copyright © 2014 American Association for the Advancement of Science</rights><rights>Copyright © 2014, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-3ee68eae257f36cb3e61d5c8fbabdc3b70e90026682968577a0cca89fbd7230a3</citedby><cites>FETCH-LOGICAL-c546t-3ee68eae257f36cb3e61d5c8fbabdc3b70e90026682968577a0cca89fbd7230a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24743830$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24743830$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,2882,2883,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24786083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Taekwan</creatorcontrib><creatorcontrib>Cai, Lili X.</creatorcontrib><creatorcontrib>Lelyveld, Victor S.</creatorcontrib><creatorcontrib>Hai, Aviad</creatorcontrib><creatorcontrib>Jasanoff, Alan</creatorcontrib><title>Molecular-Level Functional Magnetic Resonance Imaging of Dopaminergic Signaling</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>We demonstrate a technique for mapping brain activity that combines molecular specificity and spatial coverage using a neurotransmitter sensor detectable by magnetic resonance imaging (MRI). This molecular functional MRI (fMRI) method yielded time-resolved volumetric measurements of dopamine release evoked by reward-related lateral hypothalamic brain stimulation of rats injected with the neurotransmitter sensor. Peak dopamine concentrations and release rates were observed in the anterior nucleus accumbens core. Substantial dopamine transients were also present in more caudal areas. Dopamine-release amplitudes correlated with the rostrocaudal stimulation coordinate, suggesting participation of hypothalamic circuitry in modulating dopamine responses. This work provides a foundation for development and application of quantitative molecular fMRI techniques targeted toward numerous components of neural physiology.</description><subject>Animals</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Basal ganglia</subject><subject>Brain</subject><subject>Brain Mapping - methods</subject><subject>Brain research</subject><subject>Contrast Media - chemistry</subject><subject>Coordinate systems</subject><subject>Cytochrome P-450 Enzyme System - chemistry</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Dopamine</subject><subject>Dopamine - metabolism</subject><subject>Dopaminergic Neurons</subject><subject>Electrodes</subject><subject>Imaging</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medial forebrain bundle</subject><subject>Molecular chemistry</subject><subject>Molecular Imaging - methods</subject><subject>NADPH-Ferrihemoprotein Reductase - chemistry</subject><subject>NADPH-Ferrihemoprotein Reductase - genetics</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Neurotransmitters</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nucleus Accumbens - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sensors</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS1ERZfCmRMoEhcuacd24o8LUlUorbRVJT7OluOdBK8Se7GTSvz3uOxStZxG8vvNmxk_Qt5QOKWUibPsPAaHp5Q1mit4RlYUdFtrBvw5WQFwUSuQ7TF5mfMWoGiavyDHrJFKgOIrcnsTR3TLaFO9xjscq8sluNnHYMfqxg4BZ--qr5jLQ5lTXU928GGoYl99ijs7-YBpKMQ3P5SOorwiR70dM74-1BPy4_Lz94uren375frifF27thFzzRGFQouslT0XruMo6KZ1qu9st3G8k4AagAmhmBaqldKCc1bpvttIxsHyE_Jx77tbugk3DsOc7Gh2yU82_TbRevNUCf6nGeKd0VoypWQx-HAwSPHXgnk2k88Ox9EGjEs2tGWUcwoNK-j7_9BtXFK59y8FDZQ_54U621MuxZwT9g_LUDD3YZlDWOYQVul49_iGB_5fOgV4uwe2eY7psd5wxYH_AU66nCQ</recordid><startdate>20140502</startdate><enddate>20140502</enddate><creator>Lee, Taekwan</creator><creator>Cai, Lili X.</creator><creator>Lelyveld, Victor S.</creator><creator>Hai, Aviad</creator><creator>Jasanoff, Alan</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140502</creationdate><title>Molecular-Level Functional Magnetic Resonance Imaging of Dopaminergic Signaling</title><author>Lee, Taekwan ; Cai, Lili X. ; Lelyveld, Victor S. ; Hai, Aviad ; Jasanoff, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-3ee68eae257f36cb3e61d5c8fbabdc3b70e90026682968577a0cca89fbd7230a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Basal ganglia</topic><topic>Brain</topic><topic>Brain Mapping - methods</topic><topic>Brain research</topic><topic>Contrast Media - chemistry</topic><topic>Coordinate systems</topic><topic>Cytochrome P-450 Enzyme System - chemistry</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Dopamine</topic><topic>Dopamine - metabolism</topic><topic>Dopaminergic Neurons</topic><topic>Electrodes</topic><topic>Imaging</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medial forebrain bundle</topic><topic>Molecular chemistry</topic><topic>Molecular Imaging - methods</topic><topic>NADPH-Ferrihemoprotein Reductase - chemistry</topic><topic>NADPH-Ferrihemoprotein Reductase - genetics</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Neurotransmitters</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nucleus Accumbens - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Taekwan</creatorcontrib><creatorcontrib>Cai, Lili X.</creatorcontrib><creatorcontrib>Lelyveld, Victor S.</creatorcontrib><creatorcontrib>Hai, Aviad</creatorcontrib><creatorcontrib>Jasanoff, Alan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Taekwan</au><au>Cai, Lili X.</au><au>Lelyveld, Victor S.</au><au>Hai, Aviad</au><au>Jasanoff, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular-Level Functional Magnetic Resonance Imaging of Dopaminergic Signaling</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2014-05-02</date><risdate>2014</risdate><volume>344</volume><issue>6183</issue><spage>533</spage><epage>535</epage><pages>533-535</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>We demonstrate a technique for mapping brain activity that combines molecular specificity and spatial coverage using a neurotransmitter sensor detectable by magnetic resonance imaging (MRI). This molecular functional MRI (fMRI) method yielded time-resolved volumetric measurements of dopamine release evoked by reward-related lateral hypothalamic brain stimulation of rats injected with the neurotransmitter sensor. Peak dopamine concentrations and release rates were observed in the anterior nucleus accumbens core. Substantial dopamine transients were also present in more caudal areas. Dopamine-release amplitudes correlated with the rostrocaudal stimulation coordinate, suggesting participation of hypothalamic circuitry in modulating dopamine responses. This work provides a foundation for development and application of quantitative molecular fMRI techniques targeted toward numerous components of neural physiology.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>24786083</pmid><doi>10.1126/science.1249380</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2014-05, Vol.344 (6183), p.533-535 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9972887 |
source | MEDLINE; Science Magazine; JSTOR Archive Collection A-Z Listing |
subjects | Animals Bacterial Proteins - chemistry Bacterial Proteins - genetics Basal ganglia Brain Brain Mapping - methods Brain research Contrast Media - chemistry Coordinate systems Cytochrome P-450 Enzyme System - chemistry Cytochrome P-450 Enzyme System - genetics Dopamine Dopamine - metabolism Dopaminergic Neurons Electrodes Imaging Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medial forebrain bundle Molecular chemistry Molecular Imaging - methods NADPH-Ferrihemoprotein Reductase - chemistry NADPH-Ferrihemoprotein Reductase - genetics Neurology Neurons Neuroscience Neurotransmitters NMR Nuclear magnetic resonance Nucleus Accumbens - metabolism Rats Rats, Sprague-Dawley Sensors |
title | Molecular-Level Functional Magnetic Resonance Imaging of Dopaminergic Signaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A09%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular-Level%20Functional%20Magnetic%20Resonance%20Imaging%20of%20Dopaminergic%20Signaling&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Lee,%20Taekwan&rft.date=2014-05-02&rft.volume=344&rft.issue=6183&rft.spage=533&rft.epage=535&rft.pages=533-535&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1249380&rft_dat=%3Cjstor_pubme%3E24743830%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520401093&rft_id=info:pmid/24786083&rft_jstor_id=24743830&rfr_iscdi=true |