Molecular-Level Functional Magnetic Resonance Imaging of Dopaminergic Signaling

We demonstrate a technique for mapping brain activity that combines molecular specificity and spatial coverage using a neurotransmitter sensor detectable by magnetic resonance imaging (MRI). This molecular functional MRI (fMRI) method yielded time-resolved volumetric measurements of dopamine release...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2014-05, Vol.344 (6183), p.533-535
Hauptverfasser: Lee, Taekwan, Cai, Lili X., Lelyveld, Victor S., Hai, Aviad, Jasanoff, Alan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 535
container_issue 6183
container_start_page 533
container_title Science (American Association for the Advancement of Science)
container_volume 344
creator Lee, Taekwan
Cai, Lili X.
Lelyveld, Victor S.
Hai, Aviad
Jasanoff, Alan
description We demonstrate a technique for mapping brain activity that combines molecular specificity and spatial coverage using a neurotransmitter sensor detectable by magnetic resonance imaging (MRI). This molecular functional MRI (fMRI) method yielded time-resolved volumetric measurements of dopamine release evoked by reward-related lateral hypothalamic brain stimulation of rats injected with the neurotransmitter sensor. Peak dopamine concentrations and release rates were observed in the anterior nucleus accumbens core. Substantial dopamine transients were also present in more caudal areas. Dopamine-release amplitudes correlated with the rostrocaudal stimulation coordinate, suggesting participation of hypothalamic circuitry in modulating dopamine responses. This work provides a foundation for development and application of quantitative molecular fMRI techniques targeted toward numerous components of neural physiology.
doi_str_mv 10.1126/science.1249380
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9972887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24743830</jstor_id><sourcerecordid>24743830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-3ee68eae257f36cb3e61d5c8fbabdc3b70e90026682968577a0cca89fbd7230a3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS1ERZfCmRMoEhcuacd24o8LUlUorbRVJT7OluOdBK8Se7GTSvz3uOxStZxG8vvNmxk_Qt5QOKWUibPsPAaHp5Q1mit4RlYUdFtrBvw5WQFwUSuQ7TF5mfMWoGiavyDHrJFKgOIrcnsTR3TLaFO9xjscq8sluNnHYMfqxg4BZ--qr5jLQ5lTXU928GGoYl99ijs7-YBpKMQ3P5SOorwiR70dM74-1BPy4_Lz94uren375frifF27thFzzRGFQouslT0XruMo6KZ1qu9st3G8k4AagAmhmBaqldKCc1bpvttIxsHyE_Jx77tbugk3DsOc7Gh2yU82_TbRevNUCf6nGeKd0VoypWQx-HAwSPHXgnk2k88Ox9EGjEs2tGWUcwoNK-j7_9BtXFK59y8FDZQ_54U621MuxZwT9g_LUDD3YZlDWOYQVul49_iGB_5fOgV4uwe2eY7psd5wxYH_AU66nCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520401093</pqid></control><display><type>article</type><title>Molecular-Level Functional Magnetic Resonance Imaging of Dopaminergic Signaling</title><source>MEDLINE</source><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Lee, Taekwan ; Cai, Lili X. ; Lelyveld, Victor S. ; Hai, Aviad ; Jasanoff, Alan</creator><creatorcontrib>Lee, Taekwan ; Cai, Lili X. ; Lelyveld, Victor S. ; Hai, Aviad ; Jasanoff, Alan</creatorcontrib><description>We demonstrate a technique for mapping brain activity that combines molecular specificity and spatial coverage using a neurotransmitter sensor detectable by magnetic resonance imaging (MRI). This molecular functional MRI (fMRI) method yielded time-resolved volumetric measurements of dopamine release evoked by reward-related lateral hypothalamic brain stimulation of rats injected with the neurotransmitter sensor. Peak dopamine concentrations and release rates were observed in the anterior nucleus accumbens core. Substantial dopamine transients were also present in more caudal areas. Dopamine-release amplitudes correlated with the rostrocaudal stimulation coordinate, suggesting participation of hypothalamic circuitry in modulating dopamine responses. This work provides a foundation for development and application of quantitative molecular fMRI techniques targeted toward numerous components of neural physiology.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1249380</identifier><identifier>PMID: 24786083</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Animals ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Basal ganglia ; Brain ; Brain Mapping - methods ; Brain research ; Contrast Media - chemistry ; Coordinate systems ; Cytochrome P-450 Enzyme System - chemistry ; Cytochrome P-450 Enzyme System - genetics ; Dopamine ; Dopamine - metabolism ; Dopaminergic Neurons ; Electrodes ; Imaging ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Medial forebrain bundle ; Molecular chemistry ; Molecular Imaging - methods ; NADPH-Ferrihemoprotein Reductase - chemistry ; NADPH-Ferrihemoprotein Reductase - genetics ; Neurology ; Neurons ; Neuroscience ; Neurotransmitters ; NMR ; Nuclear magnetic resonance ; Nucleus Accumbens - metabolism ; Rats ; Rats, Sprague-Dawley ; Sensors</subject><ispartof>Science (American Association for the Advancement of Science), 2014-05, Vol.344 (6183), p.533-535</ispartof><rights>Copyright © 2014 American Association for the Advancement of Science</rights><rights>Copyright © 2014, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-3ee68eae257f36cb3e61d5c8fbabdc3b70e90026682968577a0cca89fbd7230a3</citedby><cites>FETCH-LOGICAL-c546t-3ee68eae257f36cb3e61d5c8fbabdc3b70e90026682968577a0cca89fbd7230a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24743830$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24743830$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,2882,2883,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24786083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Taekwan</creatorcontrib><creatorcontrib>Cai, Lili X.</creatorcontrib><creatorcontrib>Lelyveld, Victor S.</creatorcontrib><creatorcontrib>Hai, Aviad</creatorcontrib><creatorcontrib>Jasanoff, Alan</creatorcontrib><title>Molecular-Level Functional Magnetic Resonance Imaging of Dopaminergic Signaling</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>We demonstrate a technique for mapping brain activity that combines molecular specificity and spatial coverage using a neurotransmitter sensor detectable by magnetic resonance imaging (MRI). This molecular functional MRI (fMRI) method yielded time-resolved volumetric measurements of dopamine release evoked by reward-related lateral hypothalamic brain stimulation of rats injected with the neurotransmitter sensor. Peak dopamine concentrations and release rates were observed in the anterior nucleus accumbens core. Substantial dopamine transients were also present in more caudal areas. Dopamine-release amplitudes correlated with the rostrocaudal stimulation coordinate, suggesting participation of hypothalamic circuitry in modulating dopamine responses. This work provides a foundation for development and application of quantitative molecular fMRI techniques targeted toward numerous components of neural physiology.</description><subject>Animals</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Basal ganglia</subject><subject>Brain</subject><subject>Brain Mapping - methods</subject><subject>Brain research</subject><subject>Contrast Media - chemistry</subject><subject>Coordinate systems</subject><subject>Cytochrome P-450 Enzyme System - chemistry</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Dopamine</subject><subject>Dopamine - metabolism</subject><subject>Dopaminergic Neurons</subject><subject>Electrodes</subject><subject>Imaging</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medial forebrain bundle</subject><subject>Molecular chemistry</subject><subject>Molecular Imaging - methods</subject><subject>NADPH-Ferrihemoprotein Reductase - chemistry</subject><subject>NADPH-Ferrihemoprotein Reductase - genetics</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Neurotransmitters</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nucleus Accumbens - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sensors</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS1ERZfCmRMoEhcuacd24o8LUlUorbRVJT7OluOdBK8Se7GTSvz3uOxStZxG8vvNmxk_Qt5QOKWUibPsPAaHp5Q1mit4RlYUdFtrBvw5WQFwUSuQ7TF5mfMWoGiavyDHrJFKgOIrcnsTR3TLaFO9xjscq8sluNnHYMfqxg4BZ--qr5jLQ5lTXU928GGoYl99ijs7-YBpKMQ3P5SOorwiR70dM74-1BPy4_Lz94uren375frifF27thFzzRGFQouslT0XruMo6KZ1qu9st3G8k4AagAmhmBaqldKCc1bpvttIxsHyE_Jx77tbugk3DsOc7Gh2yU82_TbRevNUCf6nGeKd0VoypWQx-HAwSPHXgnk2k88Ox9EGjEs2tGWUcwoNK-j7_9BtXFK59y8FDZQ_54U621MuxZwT9g_LUDD3YZlDWOYQVul49_iGB_5fOgV4uwe2eY7psd5wxYH_AU66nCQ</recordid><startdate>20140502</startdate><enddate>20140502</enddate><creator>Lee, Taekwan</creator><creator>Cai, Lili X.</creator><creator>Lelyveld, Victor S.</creator><creator>Hai, Aviad</creator><creator>Jasanoff, Alan</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140502</creationdate><title>Molecular-Level Functional Magnetic Resonance Imaging of Dopaminergic Signaling</title><author>Lee, Taekwan ; Cai, Lili X. ; Lelyveld, Victor S. ; Hai, Aviad ; Jasanoff, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-3ee68eae257f36cb3e61d5c8fbabdc3b70e90026682968577a0cca89fbd7230a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Basal ganglia</topic><topic>Brain</topic><topic>Brain Mapping - methods</topic><topic>Brain research</topic><topic>Contrast Media - chemistry</topic><topic>Coordinate systems</topic><topic>Cytochrome P-450 Enzyme System - chemistry</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Dopamine</topic><topic>Dopamine - metabolism</topic><topic>Dopaminergic Neurons</topic><topic>Electrodes</topic><topic>Imaging</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medial forebrain bundle</topic><topic>Molecular chemistry</topic><topic>Molecular Imaging - methods</topic><topic>NADPH-Ferrihemoprotein Reductase - chemistry</topic><topic>NADPH-Ferrihemoprotein Reductase - genetics</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Neurotransmitters</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nucleus Accumbens - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Taekwan</creatorcontrib><creatorcontrib>Cai, Lili X.</creatorcontrib><creatorcontrib>Lelyveld, Victor S.</creatorcontrib><creatorcontrib>Hai, Aviad</creatorcontrib><creatorcontrib>Jasanoff, Alan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Taekwan</au><au>Cai, Lili X.</au><au>Lelyveld, Victor S.</au><au>Hai, Aviad</au><au>Jasanoff, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular-Level Functional Magnetic Resonance Imaging of Dopaminergic Signaling</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2014-05-02</date><risdate>2014</risdate><volume>344</volume><issue>6183</issue><spage>533</spage><epage>535</epage><pages>533-535</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>We demonstrate a technique for mapping brain activity that combines molecular specificity and spatial coverage using a neurotransmitter sensor detectable by magnetic resonance imaging (MRI). This molecular functional MRI (fMRI) method yielded time-resolved volumetric measurements of dopamine release evoked by reward-related lateral hypothalamic brain stimulation of rats injected with the neurotransmitter sensor. Peak dopamine concentrations and release rates were observed in the anterior nucleus accumbens core. Substantial dopamine transients were also present in more caudal areas. Dopamine-release amplitudes correlated with the rostrocaudal stimulation coordinate, suggesting participation of hypothalamic circuitry in modulating dopamine responses. This work provides a foundation for development and application of quantitative molecular fMRI techniques targeted toward numerous components of neural physiology.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>24786083</pmid><doi>10.1126/science.1249380</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2014-05, Vol.344 (6183), p.533-535
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9972887
source MEDLINE; Science Magazine; JSTOR Archive Collection A-Z Listing
subjects Animals
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Basal ganglia
Brain
Brain Mapping - methods
Brain research
Contrast Media - chemistry
Coordinate systems
Cytochrome P-450 Enzyme System - chemistry
Cytochrome P-450 Enzyme System - genetics
Dopamine
Dopamine - metabolism
Dopaminergic Neurons
Electrodes
Imaging
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medial forebrain bundle
Molecular chemistry
Molecular Imaging - methods
NADPH-Ferrihemoprotein Reductase - chemistry
NADPH-Ferrihemoprotein Reductase - genetics
Neurology
Neurons
Neuroscience
Neurotransmitters
NMR
Nuclear magnetic resonance
Nucleus Accumbens - metabolism
Rats
Rats, Sprague-Dawley
Sensors
title Molecular-Level Functional Magnetic Resonance Imaging of Dopaminergic Signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A09%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular-Level%20Functional%20Magnetic%20Resonance%20Imaging%20of%20Dopaminergic%20Signaling&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Lee,%20Taekwan&rft.date=2014-05-02&rft.volume=344&rft.issue=6183&rft.spage=533&rft.epage=535&rft.pages=533-535&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1249380&rft_dat=%3Cjstor_pubme%3E24743830%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520401093&rft_id=info:pmid/24786083&rft_jstor_id=24743830&rfr_iscdi=true