Thermo-Compression Bonding of Cu/SnAg Pillar Bumps with Electroless Palladium Immersion Gold (EPIG) Surface Finish
Thermo-compression bonding (TCB) properties of Cu/SnAg pillar bumps on electroless palladium immersion gold (EPIG) were evaluated in this study. A test chip with Cu/SnAg pillar bumps was bonded on the surface-finished Cu pads with the TCB method. The surface roughness of the EPIG was 82 nm, which wa...
Gespeichert in:
Veröffentlicht in: | Materials 2023-02, Vol.16 (4), p.1739 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 1739 |
container_title | Materials |
container_volume | 16 |
creator | Jun, So-Yeon Bang, Jung-Hwan Kim, Min-Su Han, Deok-Gon Lee, Tae-Young Yoo, Sehoon |
description | Thermo-compression bonding (TCB) properties of Cu/SnAg pillar bumps on electroless palladium immersion gold (EPIG) were evaluated in this study. A test chip with Cu/SnAg pillar bumps was bonded on the surface-finished Cu pads with the TCB method. The surface roughness of the EPIG was 82 nm, which was 1.6 times higher than that of the ENEPIG surface finish because the EPIG was so thin that it could not flatten rough bare Cu pads. From the cross-sectional SEM micrographs, the filler trapping of the TC-bonded EPIG was much higher than that of the ENEPIG sample. The high filler trapping of the EPIG sample was due to the high surface roughness of the EPIG surface finish. The contact resistance increased as the thermal cycle time increased. The increase of the contact resistance with 1500 cycles of the thermal cycle test was 26% higher for the EPIG sample than for the ENEPIG sample. |
doi_str_mv | 10.3390/ma16041739 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9965429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743159661</galeid><sourcerecordid>A743159661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-31eecb61618ad5221602a0829ff3adf9710f7ab8a65a0fe631ea7a32401e90fe3</originalsourceid><addsrcrecordid>eNpdkVFv0zAQxy0EYtPYCx8AWeJlTMpmx4kTvyB1VVcqTaLSxrPlJufWU2wXOxni23OjYwzsB1t3v_v7_j5C3nN2IYRil95wySreCPWKHHOlZMFVVb1-cT8ipznfM1xC8LZUb8mRkK1ohFTHJN3tIPlYzKPfJ8jZxUCvYuhd2NJo6Xy6vA2zLV27YTCJXk1-n-kPN-7oYoBuTHHAGro2mO3d5OnKe0i_RZZx6OnZYr1afqK3U7KmA3rtgsu7d-SNNUOG06fzhHy7XtzNvxQ3X5er-eym6CpWjYXgAN1Gcslb09dliTZLw7B_a4XprWo4s43ZtEbWhlmQyJvGiLJiHBQGxAn5fNDdTxsPfQdhTGbQ--S8ST91NE7_mwlup7fxQePH1VWpUODsSSDF7xPkUXuXO0CvAeKUddm0jLW8UQLRj_-h93FKAe0h1ahaMV63SF0cqK0ZQLtgI77b4e7Buy4GsA7js6YSvFZSciw4PxR0KeacwD53z5l-HL_-O36EP7z0-4z-Gbb4BRL5qgw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779590158</pqid></control><display><type>article</type><title>Thermo-Compression Bonding of Cu/SnAg Pillar Bumps with Electroless Palladium Immersion Gold (EPIG) Surface Finish</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Jun, So-Yeon ; Bang, Jung-Hwan ; Kim, Min-Su ; Han, Deok-Gon ; Lee, Tae-Young ; Yoo, Sehoon</creator><creatorcontrib>Jun, So-Yeon ; Bang, Jung-Hwan ; Kim, Min-Su ; Han, Deok-Gon ; Lee, Tae-Young ; Yoo, Sehoon</creatorcontrib><description>Thermo-compression bonding (TCB) properties of Cu/SnAg pillar bumps on electroless palladium immersion gold (EPIG) were evaluated in this study. A test chip with Cu/SnAg pillar bumps was bonded on the surface-finished Cu pads with the TCB method. The surface roughness of the EPIG was 82 nm, which was 1.6 times higher than that of the ENEPIG surface finish because the EPIG was so thin that it could not flatten rough bare Cu pads. From the cross-sectional SEM micrographs, the filler trapping of the TC-bonded EPIG was much higher than that of the ENEPIG sample. The high filler trapping of the EPIG sample was due to the high surface roughness of the EPIG surface finish. The contact resistance increased as the thermal cycle time increased. The increase of the contact resistance with 1500 cycles of the thermal cycle test was 26% higher for the EPIG sample than for the ENEPIG sample.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16041739</identifier><identifier>PMID: 36837369</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Bonding ; Contact resistance ; Cycle time ; Etching ; Fillers ; Gold ; Palladium ; Photomicrographs ; Plating ; Scanning electron microscopy ; Semiconductors ; Submerging ; Surface finish ; Surface roughness ; Thermal cycling ; Thermal resistance ; Trapping</subject><ispartof>Materials, 2023-02, Vol.16 (4), p.1739</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c404t-31eecb61618ad5221602a0829ff3adf9710f7ab8a65a0fe631ea7a32401e90fe3</cites><orcidid>0000-0002-0226-9076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965429/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965429/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36837369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jun, So-Yeon</creatorcontrib><creatorcontrib>Bang, Jung-Hwan</creatorcontrib><creatorcontrib>Kim, Min-Su</creatorcontrib><creatorcontrib>Han, Deok-Gon</creatorcontrib><creatorcontrib>Lee, Tae-Young</creatorcontrib><creatorcontrib>Yoo, Sehoon</creatorcontrib><title>Thermo-Compression Bonding of Cu/SnAg Pillar Bumps with Electroless Palladium Immersion Gold (EPIG) Surface Finish</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Thermo-compression bonding (TCB) properties of Cu/SnAg pillar bumps on electroless palladium immersion gold (EPIG) were evaluated in this study. A test chip with Cu/SnAg pillar bumps was bonded on the surface-finished Cu pads with the TCB method. The surface roughness of the EPIG was 82 nm, which was 1.6 times higher than that of the ENEPIG surface finish because the EPIG was so thin that it could not flatten rough bare Cu pads. From the cross-sectional SEM micrographs, the filler trapping of the TC-bonded EPIG was much higher than that of the ENEPIG sample. The high filler trapping of the EPIG sample was due to the high surface roughness of the EPIG surface finish. The contact resistance increased as the thermal cycle time increased. The increase of the contact resistance with 1500 cycles of the thermal cycle test was 26% higher for the EPIG sample than for the ENEPIG sample.</description><subject>Bonding</subject><subject>Contact resistance</subject><subject>Cycle time</subject><subject>Etching</subject><subject>Fillers</subject><subject>Gold</subject><subject>Palladium</subject><subject>Photomicrographs</subject><subject>Plating</subject><subject>Scanning electron microscopy</subject><subject>Semiconductors</subject><subject>Submerging</subject><subject>Surface finish</subject><subject>Surface roughness</subject><subject>Thermal cycling</subject><subject>Thermal resistance</subject><subject>Trapping</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkVFv0zAQxy0EYtPYCx8AWeJlTMpmx4kTvyB1VVcqTaLSxrPlJufWU2wXOxni23OjYwzsB1t3v_v7_j5C3nN2IYRil95wySreCPWKHHOlZMFVVb1-cT8ipznfM1xC8LZUb8mRkK1ohFTHJN3tIPlYzKPfJ8jZxUCvYuhd2NJo6Xy6vA2zLV27YTCJXk1-n-kPN-7oYoBuTHHAGro2mO3d5OnKe0i_RZZx6OnZYr1afqK3U7KmA3rtgsu7d-SNNUOG06fzhHy7XtzNvxQ3X5er-eym6CpWjYXgAN1Gcslb09dliTZLw7B_a4XprWo4s43ZtEbWhlmQyJvGiLJiHBQGxAn5fNDdTxsPfQdhTGbQ--S8ST91NE7_mwlup7fxQePH1VWpUODsSSDF7xPkUXuXO0CvAeKUddm0jLW8UQLRj_-h93FKAe0h1ahaMV63SF0cqK0ZQLtgI77b4e7Buy4GsA7js6YSvFZSciw4PxR0KeacwD53z5l-HL_-O36EP7z0-4z-Gbb4BRL5qgw</recordid><startdate>20230220</startdate><enddate>20230220</enddate><creator>Jun, So-Yeon</creator><creator>Bang, Jung-Hwan</creator><creator>Kim, Min-Su</creator><creator>Han, Deok-Gon</creator><creator>Lee, Tae-Young</creator><creator>Yoo, Sehoon</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0226-9076</orcidid></search><sort><creationdate>20230220</creationdate><title>Thermo-Compression Bonding of Cu/SnAg Pillar Bumps with Electroless Palladium Immersion Gold (EPIG) Surface Finish</title><author>Jun, So-Yeon ; Bang, Jung-Hwan ; Kim, Min-Su ; Han, Deok-Gon ; Lee, Tae-Young ; Yoo, Sehoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-31eecb61618ad5221602a0829ff3adf9710f7ab8a65a0fe631ea7a32401e90fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bonding</topic><topic>Contact resistance</topic><topic>Cycle time</topic><topic>Etching</topic><topic>Fillers</topic><topic>Gold</topic><topic>Palladium</topic><topic>Photomicrographs</topic><topic>Plating</topic><topic>Scanning electron microscopy</topic><topic>Semiconductors</topic><topic>Submerging</topic><topic>Surface finish</topic><topic>Surface roughness</topic><topic>Thermal cycling</topic><topic>Thermal resistance</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jun, So-Yeon</creatorcontrib><creatorcontrib>Bang, Jung-Hwan</creatorcontrib><creatorcontrib>Kim, Min-Su</creatorcontrib><creatorcontrib>Han, Deok-Gon</creatorcontrib><creatorcontrib>Lee, Tae-Young</creatorcontrib><creatorcontrib>Yoo, Sehoon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jun, So-Yeon</au><au>Bang, Jung-Hwan</au><au>Kim, Min-Su</au><au>Han, Deok-Gon</au><au>Lee, Tae-Young</au><au>Yoo, Sehoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo-Compression Bonding of Cu/SnAg Pillar Bumps with Electroless Palladium Immersion Gold (EPIG) Surface Finish</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-02-20</date><risdate>2023</risdate><volume>16</volume><issue>4</issue><spage>1739</spage><pages>1739-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Thermo-compression bonding (TCB) properties of Cu/SnAg pillar bumps on electroless palladium immersion gold (EPIG) were evaluated in this study. A test chip with Cu/SnAg pillar bumps was bonded on the surface-finished Cu pads with the TCB method. The surface roughness of the EPIG was 82 nm, which was 1.6 times higher than that of the ENEPIG surface finish because the EPIG was so thin that it could not flatten rough bare Cu pads. From the cross-sectional SEM micrographs, the filler trapping of the TC-bonded EPIG was much higher than that of the ENEPIG sample. The high filler trapping of the EPIG sample was due to the high surface roughness of the EPIG surface finish. The contact resistance increased as the thermal cycle time increased. The increase of the contact resistance with 1500 cycles of the thermal cycle test was 26% higher for the EPIG sample than for the ENEPIG sample.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36837369</pmid><doi>10.3390/ma16041739</doi><orcidid>https://orcid.org/0000-0002-0226-9076</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-02, Vol.16 (4), p.1739 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9965429 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Bonding Contact resistance Cycle time Etching Fillers Gold Palladium Photomicrographs Plating Scanning electron microscopy Semiconductors Submerging Surface finish Surface roughness Thermal cycling Thermal resistance Trapping |
title | Thermo-Compression Bonding of Cu/SnAg Pillar Bumps with Electroless Palladium Immersion Gold (EPIG) Surface Finish |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo-Compression%20Bonding%20of%20Cu/SnAg%20Pillar%20Bumps%20with%20Electroless%20Palladium%20Immersion%20Gold%20(EPIG)%20Surface%20Finish&rft.jtitle=Materials&rft.au=Jun,%20So-Yeon&rft.date=2023-02-20&rft.volume=16&rft.issue=4&rft.spage=1739&rft.pages=1739-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16041739&rft_dat=%3Cgale_pubme%3EA743159661%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779590158&rft_id=info:pmid/36837369&rft_galeid=A743159661&rfr_iscdi=true |