Thermo-Compression Bonding of Cu/SnAg Pillar Bumps with Electroless Palladium Immersion Gold (EPIG) Surface Finish

Thermo-compression bonding (TCB) properties of Cu/SnAg pillar bumps on electroless palladium immersion gold (EPIG) were evaluated in this study. A test chip with Cu/SnAg pillar bumps was bonded on the surface-finished Cu pads with the TCB method. The surface roughness of the EPIG was 82 nm, which wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-02, Vol.16 (4), p.1739
Hauptverfasser: Jun, So-Yeon, Bang, Jung-Hwan, Kim, Min-Su, Han, Deok-Gon, Lee, Tae-Young, Yoo, Sehoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 1739
container_title Materials
container_volume 16
creator Jun, So-Yeon
Bang, Jung-Hwan
Kim, Min-Su
Han, Deok-Gon
Lee, Tae-Young
Yoo, Sehoon
description Thermo-compression bonding (TCB) properties of Cu/SnAg pillar bumps on electroless palladium immersion gold (EPIG) were evaluated in this study. A test chip with Cu/SnAg pillar bumps was bonded on the surface-finished Cu pads with the TCB method. The surface roughness of the EPIG was 82 nm, which was 1.6 times higher than that of the ENEPIG surface finish because the EPIG was so thin that it could not flatten rough bare Cu pads. From the cross-sectional SEM micrographs, the filler trapping of the TC-bonded EPIG was much higher than that of the ENEPIG sample. The high filler trapping of the EPIG sample was due to the high surface roughness of the EPIG surface finish. The contact resistance increased as the thermal cycle time increased. The increase of the contact resistance with 1500 cycles of the thermal cycle test was 26% higher for the EPIG sample than for the ENEPIG sample.
doi_str_mv 10.3390/ma16041739
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9965429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743159661</galeid><sourcerecordid>A743159661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-31eecb61618ad5221602a0829ff3adf9710f7ab8a65a0fe631ea7a32401e90fe3</originalsourceid><addsrcrecordid>eNpdkVFv0zAQxy0EYtPYCx8AWeJlTMpmx4kTvyB1VVcqTaLSxrPlJufWU2wXOxni23OjYwzsB1t3v_v7_j5C3nN2IYRil95wySreCPWKHHOlZMFVVb1-cT8ipznfM1xC8LZUb8mRkK1ohFTHJN3tIPlYzKPfJ8jZxUCvYuhd2NJo6Xy6vA2zLV27YTCJXk1-n-kPN-7oYoBuTHHAGro2mO3d5OnKe0i_RZZx6OnZYr1afqK3U7KmA3rtgsu7d-SNNUOG06fzhHy7XtzNvxQ3X5er-eym6CpWjYXgAN1Gcslb09dliTZLw7B_a4XprWo4s43ZtEbWhlmQyJvGiLJiHBQGxAn5fNDdTxsPfQdhTGbQ--S8ST91NE7_mwlup7fxQePH1VWpUODsSSDF7xPkUXuXO0CvAeKUddm0jLW8UQLRj_-h93FKAe0h1ahaMV63SF0cqK0ZQLtgI77b4e7Buy4GsA7js6YSvFZSciw4PxR0KeacwD53z5l-HL_-O36EP7z0-4z-Gbb4BRL5qgw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779590158</pqid></control><display><type>article</type><title>Thermo-Compression Bonding of Cu/SnAg Pillar Bumps with Electroless Palladium Immersion Gold (EPIG) Surface Finish</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Jun, So-Yeon ; Bang, Jung-Hwan ; Kim, Min-Su ; Han, Deok-Gon ; Lee, Tae-Young ; Yoo, Sehoon</creator><creatorcontrib>Jun, So-Yeon ; Bang, Jung-Hwan ; Kim, Min-Su ; Han, Deok-Gon ; Lee, Tae-Young ; Yoo, Sehoon</creatorcontrib><description>Thermo-compression bonding (TCB) properties of Cu/SnAg pillar bumps on electroless palladium immersion gold (EPIG) were evaluated in this study. A test chip with Cu/SnAg pillar bumps was bonded on the surface-finished Cu pads with the TCB method. The surface roughness of the EPIG was 82 nm, which was 1.6 times higher than that of the ENEPIG surface finish because the EPIG was so thin that it could not flatten rough bare Cu pads. From the cross-sectional SEM micrographs, the filler trapping of the TC-bonded EPIG was much higher than that of the ENEPIG sample. The high filler trapping of the EPIG sample was due to the high surface roughness of the EPIG surface finish. The contact resistance increased as the thermal cycle time increased. The increase of the contact resistance with 1500 cycles of the thermal cycle test was 26% higher for the EPIG sample than for the ENEPIG sample.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16041739</identifier><identifier>PMID: 36837369</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Bonding ; Contact resistance ; Cycle time ; Etching ; Fillers ; Gold ; Palladium ; Photomicrographs ; Plating ; Scanning electron microscopy ; Semiconductors ; Submerging ; Surface finish ; Surface roughness ; Thermal cycling ; Thermal resistance ; Trapping</subject><ispartof>Materials, 2023-02, Vol.16 (4), p.1739</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c404t-31eecb61618ad5221602a0829ff3adf9710f7ab8a65a0fe631ea7a32401e90fe3</cites><orcidid>0000-0002-0226-9076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965429/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965429/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36837369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jun, So-Yeon</creatorcontrib><creatorcontrib>Bang, Jung-Hwan</creatorcontrib><creatorcontrib>Kim, Min-Su</creatorcontrib><creatorcontrib>Han, Deok-Gon</creatorcontrib><creatorcontrib>Lee, Tae-Young</creatorcontrib><creatorcontrib>Yoo, Sehoon</creatorcontrib><title>Thermo-Compression Bonding of Cu/SnAg Pillar Bumps with Electroless Palladium Immersion Gold (EPIG) Surface Finish</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Thermo-compression bonding (TCB) properties of Cu/SnAg pillar bumps on electroless palladium immersion gold (EPIG) were evaluated in this study. A test chip with Cu/SnAg pillar bumps was bonded on the surface-finished Cu pads with the TCB method. The surface roughness of the EPIG was 82 nm, which was 1.6 times higher than that of the ENEPIG surface finish because the EPIG was so thin that it could not flatten rough bare Cu pads. From the cross-sectional SEM micrographs, the filler trapping of the TC-bonded EPIG was much higher than that of the ENEPIG sample. The high filler trapping of the EPIG sample was due to the high surface roughness of the EPIG surface finish. The contact resistance increased as the thermal cycle time increased. The increase of the contact resistance with 1500 cycles of the thermal cycle test was 26% higher for the EPIG sample than for the ENEPIG sample.</description><subject>Bonding</subject><subject>Contact resistance</subject><subject>Cycle time</subject><subject>Etching</subject><subject>Fillers</subject><subject>Gold</subject><subject>Palladium</subject><subject>Photomicrographs</subject><subject>Plating</subject><subject>Scanning electron microscopy</subject><subject>Semiconductors</subject><subject>Submerging</subject><subject>Surface finish</subject><subject>Surface roughness</subject><subject>Thermal cycling</subject><subject>Thermal resistance</subject><subject>Trapping</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkVFv0zAQxy0EYtPYCx8AWeJlTMpmx4kTvyB1VVcqTaLSxrPlJufWU2wXOxni23OjYwzsB1t3v_v7_j5C3nN2IYRil95wySreCPWKHHOlZMFVVb1-cT8ipznfM1xC8LZUb8mRkK1ohFTHJN3tIPlYzKPfJ8jZxUCvYuhd2NJo6Xy6vA2zLV27YTCJXk1-n-kPN-7oYoBuTHHAGro2mO3d5OnKe0i_RZZx6OnZYr1afqK3U7KmA3rtgsu7d-SNNUOG06fzhHy7XtzNvxQ3X5er-eym6CpWjYXgAN1Gcslb09dliTZLw7B_a4XprWo4s43ZtEbWhlmQyJvGiLJiHBQGxAn5fNDdTxsPfQdhTGbQ--S8ST91NE7_mwlup7fxQePH1VWpUODsSSDF7xPkUXuXO0CvAeKUddm0jLW8UQLRj_-h93FKAe0h1ahaMV63SF0cqK0ZQLtgI77b4e7Buy4GsA7js6YSvFZSciw4PxR0KeacwD53z5l-HL_-O36EP7z0-4z-Gbb4BRL5qgw</recordid><startdate>20230220</startdate><enddate>20230220</enddate><creator>Jun, So-Yeon</creator><creator>Bang, Jung-Hwan</creator><creator>Kim, Min-Su</creator><creator>Han, Deok-Gon</creator><creator>Lee, Tae-Young</creator><creator>Yoo, Sehoon</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0226-9076</orcidid></search><sort><creationdate>20230220</creationdate><title>Thermo-Compression Bonding of Cu/SnAg Pillar Bumps with Electroless Palladium Immersion Gold (EPIG) Surface Finish</title><author>Jun, So-Yeon ; Bang, Jung-Hwan ; Kim, Min-Su ; Han, Deok-Gon ; Lee, Tae-Young ; Yoo, Sehoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-31eecb61618ad5221602a0829ff3adf9710f7ab8a65a0fe631ea7a32401e90fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bonding</topic><topic>Contact resistance</topic><topic>Cycle time</topic><topic>Etching</topic><topic>Fillers</topic><topic>Gold</topic><topic>Palladium</topic><topic>Photomicrographs</topic><topic>Plating</topic><topic>Scanning electron microscopy</topic><topic>Semiconductors</topic><topic>Submerging</topic><topic>Surface finish</topic><topic>Surface roughness</topic><topic>Thermal cycling</topic><topic>Thermal resistance</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jun, So-Yeon</creatorcontrib><creatorcontrib>Bang, Jung-Hwan</creatorcontrib><creatorcontrib>Kim, Min-Su</creatorcontrib><creatorcontrib>Han, Deok-Gon</creatorcontrib><creatorcontrib>Lee, Tae-Young</creatorcontrib><creatorcontrib>Yoo, Sehoon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jun, So-Yeon</au><au>Bang, Jung-Hwan</au><au>Kim, Min-Su</au><au>Han, Deok-Gon</au><au>Lee, Tae-Young</au><au>Yoo, Sehoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo-Compression Bonding of Cu/SnAg Pillar Bumps with Electroless Palladium Immersion Gold (EPIG) Surface Finish</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-02-20</date><risdate>2023</risdate><volume>16</volume><issue>4</issue><spage>1739</spage><pages>1739-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Thermo-compression bonding (TCB) properties of Cu/SnAg pillar bumps on electroless palladium immersion gold (EPIG) were evaluated in this study. A test chip with Cu/SnAg pillar bumps was bonded on the surface-finished Cu pads with the TCB method. The surface roughness of the EPIG was 82 nm, which was 1.6 times higher than that of the ENEPIG surface finish because the EPIG was so thin that it could not flatten rough bare Cu pads. From the cross-sectional SEM micrographs, the filler trapping of the TC-bonded EPIG was much higher than that of the ENEPIG sample. The high filler trapping of the EPIG sample was due to the high surface roughness of the EPIG surface finish. The contact resistance increased as the thermal cycle time increased. The increase of the contact resistance with 1500 cycles of the thermal cycle test was 26% higher for the EPIG sample than for the ENEPIG sample.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36837369</pmid><doi>10.3390/ma16041739</doi><orcidid>https://orcid.org/0000-0002-0226-9076</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-02, Vol.16 (4), p.1739
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9965429
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Bonding
Contact resistance
Cycle time
Etching
Fillers
Gold
Palladium
Photomicrographs
Plating
Scanning electron microscopy
Semiconductors
Submerging
Surface finish
Surface roughness
Thermal cycling
Thermal resistance
Trapping
title Thermo-Compression Bonding of Cu/SnAg Pillar Bumps with Electroless Palladium Immersion Gold (EPIG) Surface Finish
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo-Compression%20Bonding%20of%20Cu/SnAg%20Pillar%20Bumps%20with%20Electroless%20Palladium%20Immersion%20Gold%20(EPIG)%20Surface%20Finish&rft.jtitle=Materials&rft.au=Jun,%20So-Yeon&rft.date=2023-02-20&rft.volume=16&rft.issue=4&rft.spage=1739&rft.pages=1739-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16041739&rft_dat=%3Cgale_pubme%3EA743159661%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779590158&rft_id=info:pmid/36837369&rft_galeid=A743159661&rfr_iscdi=true