Genome-wide CRISPRi screen identifies enhanced autolithotrophic phenotypes in acetogenic bacterium Eubacterium limosum

Acetogenic bacteria are a unique biocatalyst that highly promises to develop the sustainable bioconversion of carbon oxides (e.g., CO and CO ) into multicarbon biochemicals. Genotype-phenotype relationships are important for engineering their metabolic capability to enhance their biocatalytic perfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2023-02, Vol.120 (6), p.e2216244120-e2216244120
Hauptverfasser: Shin, Jongoh, Bae, Jiyun, Lee, Hyeonsik, Kang, Seulgi, Jin, Sangrak, Song, Yoseb, Cho, Suhyung, Cho, Byung-Kwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2216244120
container_issue 6
container_start_page e2216244120
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Shin, Jongoh
Bae, Jiyun
Lee, Hyeonsik
Kang, Seulgi
Jin, Sangrak
Song, Yoseb
Cho, Suhyung
Cho, Byung-Kwan
description Acetogenic bacteria are a unique biocatalyst that highly promises to develop the sustainable bioconversion of carbon oxides (e.g., CO and CO ) into multicarbon biochemicals. Genotype-phenotype relationships are important for engineering their metabolic capability to enhance their biocatalytic performance; however, systemic investigation on the fitness contribution of individual gene has been limited. Here, we report genome-scale CRISPR interference screening using 41,939 guide RNAs designed from the genome, one of the model acetogenic species, where all genes were targeted for transcriptional suppression. We investigated the fitness contributions of 96% of the total genes identified, revealing the gene fitness and essentiality for heterotrophic and autotrophic metabolisms. Our data show that the Wood-Ljungdahl pathway, membrane regeneration, membrane protein biosynthesis, and butyrate synthesis are essential for autotrophic acetogenesis in . Furthermore, we discovered genes that are repression targets that unbiasedly increased autotrophic growth rates fourfold and acetoin production 1.5-fold compared to the wild-type strain under CO -H conditions. These results provide insight for understanding acetogenic metabolism and genome engineering in acetogenic bacteria.
doi_str_mv 10.1073/pnas.2216244120
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9963998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774942593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-3e4f84d59e1ee606746f90cd8cfe707014e337f8d7e580df3d15cfd0809e86693</originalsourceid><addsrcrecordid>eNpdkc9rFTEQx4Mo9lk9e5MFL162za-XbC6CPGotFJSq55Amk27KbrIm2Zb-9-bR2qqnGWY-82W-fBF6S_ARwZIdL9GUI0qJoJwTip-hDcGK9IIr_BxtMKayHzjlB-hVKdcYY7Ud8Et0wIQkgkm2QTenENMM_W1w0O0uzr5_uwhdsRkgdm0Ua_ABSgdxNNGC68xa0xTqmGpOyxhst4xNoN4tDQqxMxZquoLYFpfGVshhnbuT9amfwpzKOr9GL7yZCrx5qIfo5-eTH7sv_fnX07Pdp_Peckpqz4D7gbutAgIgsJBceIWtG6wHiSUmHBiTfnASmjHnmSNb6x0esIJBCMUO0cd73WW9nMHZZiibSS85zCbf6WSC_ncTw6iv0o1WSjClhibw4UEgp18rlKrnUCxMk4mQ1qKplIQxJgRt6Pv_0Ou05tjs7SmuON0q1qjje8rmVEoG__gMwXqfqd5nqp8ybRfv_vbwyP8Jkf0Gk0ugfg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774942593</pqid></control><display><type>article</type><title>Genome-wide CRISPRi screen identifies enhanced autolithotrophic phenotypes in acetogenic bacterium Eubacterium limosum</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Shin, Jongoh ; Bae, Jiyun ; Lee, Hyeonsik ; Kang, Seulgi ; Jin, Sangrak ; Song, Yoseb ; Cho, Suhyung ; Cho, Byung-Kwan</creator><creatorcontrib>Shin, Jongoh ; Bae, Jiyun ; Lee, Hyeonsik ; Kang, Seulgi ; Jin, Sangrak ; Song, Yoseb ; Cho, Suhyung ; Cho, Byung-Kwan</creatorcontrib><description>Acetogenic bacteria are a unique biocatalyst that highly promises to develop the sustainable bioconversion of carbon oxides (e.g., CO and CO ) into multicarbon biochemicals. Genotype-phenotype relationships are important for engineering their metabolic capability to enhance their biocatalytic performance; however, systemic investigation on the fitness contribution of individual gene has been limited. Here, we report genome-scale CRISPR interference screening using 41,939 guide RNAs designed from the genome, one of the model acetogenic species, where all genes were targeted for transcriptional suppression. We investigated the fitness contributions of 96% of the total genes identified, revealing the gene fitness and essentiality for heterotrophic and autotrophic metabolisms. Our data show that the Wood-Ljungdahl pathway, membrane regeneration, membrane protein biosynthesis, and butyrate synthesis are essential for autotrophic acetogenesis in . Furthermore, we discovered genes that are repression targets that unbiasedly increased autotrophic growth rates fourfold and acetoin production 1.5-fold compared to the wild-type strain under CO -H conditions. These results provide insight for understanding acetogenic metabolism and genome engineering in acetogenic bacteria.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2216244120</identifier><identifier>PMID: 36716373</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acetogenesis ; Acetoin ; Autotrophic Processes ; Bacteria ; Bioconversion ; Biological Sciences ; Biosynthesis ; Carbon dioxide ; Carbon Dioxide - metabolism ; CRISPR ; Eubacterium - genetics ; Eubacterium - metabolism ; Eurytium limosum ; Fitness ; Gene silencing ; Genes ; Genome, Bacterial ; Genomes ; Genotypes ; Growth rate ; Membrane proteins ; Membranes ; Metabolic engineering ; Phenotypes ; Protein biosynthesis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-02, Vol.120 (6), p.e2216244120-e2216244120</ispartof><rights>Copyright National Academy of Sciences Feb 7, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-3e4f84d59e1ee606746f90cd8cfe707014e337f8d7e580df3d15cfd0809e86693</citedby><cites>FETCH-LOGICAL-c421t-3e4f84d59e1ee606746f90cd8cfe707014e337f8d7e580df3d15cfd0809e86693</cites><orcidid>0000-0003-4788-4184 ; 0000-0003-4363-5148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963998/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963998/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36716373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Jongoh</creatorcontrib><creatorcontrib>Bae, Jiyun</creatorcontrib><creatorcontrib>Lee, Hyeonsik</creatorcontrib><creatorcontrib>Kang, Seulgi</creatorcontrib><creatorcontrib>Jin, Sangrak</creatorcontrib><creatorcontrib>Song, Yoseb</creatorcontrib><creatorcontrib>Cho, Suhyung</creatorcontrib><creatorcontrib>Cho, Byung-Kwan</creatorcontrib><title>Genome-wide CRISPRi screen identifies enhanced autolithotrophic phenotypes in acetogenic bacterium Eubacterium limosum</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Acetogenic bacteria are a unique biocatalyst that highly promises to develop the sustainable bioconversion of carbon oxides (e.g., CO and CO ) into multicarbon biochemicals. Genotype-phenotype relationships are important for engineering their metabolic capability to enhance their biocatalytic performance; however, systemic investigation on the fitness contribution of individual gene has been limited. Here, we report genome-scale CRISPR interference screening using 41,939 guide RNAs designed from the genome, one of the model acetogenic species, where all genes were targeted for transcriptional suppression. We investigated the fitness contributions of 96% of the total genes identified, revealing the gene fitness and essentiality for heterotrophic and autotrophic metabolisms. Our data show that the Wood-Ljungdahl pathway, membrane regeneration, membrane protein biosynthesis, and butyrate synthesis are essential for autotrophic acetogenesis in . Furthermore, we discovered genes that are repression targets that unbiasedly increased autotrophic growth rates fourfold and acetoin production 1.5-fold compared to the wild-type strain under CO -H conditions. These results provide insight for understanding acetogenic metabolism and genome engineering in acetogenic bacteria.</description><subject>Acetogenesis</subject><subject>Acetoin</subject><subject>Autotrophic Processes</subject><subject>Bacteria</subject><subject>Bioconversion</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>CRISPR</subject><subject>Eubacterium - genetics</subject><subject>Eubacterium - metabolism</subject><subject>Eurytium limosum</subject><subject>Fitness</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Genotypes</subject><subject>Growth rate</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Metabolic engineering</subject><subject>Phenotypes</subject><subject>Protein biosynthesis</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc9rFTEQx4Mo9lk9e5MFL162za-XbC6CPGotFJSq55Amk27KbrIm2Zb-9-bR2qqnGWY-82W-fBF6S_ARwZIdL9GUI0qJoJwTip-hDcGK9IIr_BxtMKayHzjlB-hVKdcYY7Ud8Et0wIQkgkm2QTenENMM_W1w0O0uzr5_uwhdsRkgdm0Ua_ABSgdxNNGC68xa0xTqmGpOyxhst4xNoN4tDQqxMxZquoLYFpfGVshhnbuT9amfwpzKOr9GL7yZCrx5qIfo5-eTH7sv_fnX07Pdp_Peckpqz4D7gbutAgIgsJBceIWtG6wHiSUmHBiTfnASmjHnmSNb6x0esIJBCMUO0cd73WW9nMHZZiibSS85zCbf6WSC_ncTw6iv0o1WSjClhibw4UEgp18rlKrnUCxMk4mQ1qKplIQxJgRt6Pv_0Ou05tjs7SmuON0q1qjje8rmVEoG__gMwXqfqd5nqp8ybRfv_vbwyP8Jkf0Gk0ugfg</recordid><startdate>20230207</startdate><enddate>20230207</enddate><creator>Shin, Jongoh</creator><creator>Bae, Jiyun</creator><creator>Lee, Hyeonsik</creator><creator>Kang, Seulgi</creator><creator>Jin, Sangrak</creator><creator>Song, Yoseb</creator><creator>Cho, Suhyung</creator><creator>Cho, Byung-Kwan</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4788-4184</orcidid><orcidid>https://orcid.org/0000-0003-4363-5148</orcidid></search><sort><creationdate>20230207</creationdate><title>Genome-wide CRISPRi screen identifies enhanced autolithotrophic phenotypes in acetogenic bacterium Eubacterium limosum</title><author>Shin, Jongoh ; Bae, Jiyun ; Lee, Hyeonsik ; Kang, Seulgi ; Jin, Sangrak ; Song, Yoseb ; Cho, Suhyung ; Cho, Byung-Kwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-3e4f84d59e1ee606746f90cd8cfe707014e337f8d7e580df3d15cfd0809e86693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acetogenesis</topic><topic>Acetoin</topic><topic>Autotrophic Processes</topic><topic>Bacteria</topic><topic>Bioconversion</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>CRISPR</topic><topic>Eubacterium - genetics</topic><topic>Eubacterium - metabolism</topic><topic>Eurytium limosum</topic><topic>Fitness</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Genotypes</topic><topic>Growth rate</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Metabolic engineering</topic><topic>Phenotypes</topic><topic>Protein biosynthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Jongoh</creatorcontrib><creatorcontrib>Bae, Jiyun</creatorcontrib><creatorcontrib>Lee, Hyeonsik</creatorcontrib><creatorcontrib>Kang, Seulgi</creatorcontrib><creatorcontrib>Jin, Sangrak</creatorcontrib><creatorcontrib>Song, Yoseb</creatorcontrib><creatorcontrib>Cho, Suhyung</creatorcontrib><creatorcontrib>Cho, Byung-Kwan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Jongoh</au><au>Bae, Jiyun</au><au>Lee, Hyeonsik</au><au>Kang, Seulgi</au><au>Jin, Sangrak</au><au>Song, Yoseb</au><au>Cho, Suhyung</au><au>Cho, Byung-Kwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-wide CRISPRi screen identifies enhanced autolithotrophic phenotypes in acetogenic bacterium Eubacterium limosum</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-02-07</date><risdate>2023</risdate><volume>120</volume><issue>6</issue><spage>e2216244120</spage><epage>e2216244120</epage><pages>e2216244120-e2216244120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Acetogenic bacteria are a unique biocatalyst that highly promises to develop the sustainable bioconversion of carbon oxides (e.g., CO and CO ) into multicarbon biochemicals. Genotype-phenotype relationships are important for engineering their metabolic capability to enhance their biocatalytic performance; however, systemic investigation on the fitness contribution of individual gene has been limited. Here, we report genome-scale CRISPR interference screening using 41,939 guide RNAs designed from the genome, one of the model acetogenic species, where all genes were targeted for transcriptional suppression. We investigated the fitness contributions of 96% of the total genes identified, revealing the gene fitness and essentiality for heterotrophic and autotrophic metabolisms. Our data show that the Wood-Ljungdahl pathway, membrane regeneration, membrane protein biosynthesis, and butyrate synthesis are essential for autotrophic acetogenesis in . Furthermore, we discovered genes that are repression targets that unbiasedly increased autotrophic growth rates fourfold and acetoin production 1.5-fold compared to the wild-type strain under CO -H conditions. These results provide insight for understanding acetogenic metabolism and genome engineering in acetogenic bacteria.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36716373</pmid><doi>10.1073/pnas.2216244120</doi><orcidid>https://orcid.org/0000-0003-4788-4184</orcidid><orcidid>https://orcid.org/0000-0003-4363-5148</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-02, Vol.120 (6), p.e2216244120-e2216244120
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9963998
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Acetogenesis
Acetoin
Autotrophic Processes
Bacteria
Bioconversion
Biological Sciences
Biosynthesis
Carbon dioxide
Carbon Dioxide - metabolism
CRISPR
Eubacterium - genetics
Eubacterium - metabolism
Eurytium limosum
Fitness
Gene silencing
Genes
Genome, Bacterial
Genomes
Genotypes
Growth rate
Membrane proteins
Membranes
Metabolic engineering
Phenotypes
Protein biosynthesis
title Genome-wide CRISPRi screen identifies enhanced autolithotrophic phenotypes in acetogenic bacterium Eubacterium limosum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-wide%20CRISPRi%20screen%20identifies%20enhanced%20autolithotrophic%20phenotypes%20in%20acetogenic%20bacterium%20Eubacterium%20limosum&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Shin,%20Jongoh&rft.date=2023-02-07&rft.volume=120&rft.issue=6&rft.spage=e2216244120&rft.epage=e2216244120&rft.pages=e2216244120-e2216244120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2216244120&rft_dat=%3Cproquest_pubme%3E2774942593%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774942593&rft_id=info:pmid/36716373&rfr_iscdi=true