How Radiomics Can Improve Breast Cancer Diagnosis and Treatment

Recent technological advances in the field of artificial intelligence hold promise in addressing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination and molecular profiling, prediction of lymph node metastases, and prognostication of treatment response and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical medicine 2023-02, Vol.12 (4), p.1372
Hauptverfasser: Pesapane, Filippo, De Marco, Paolo, Rapino, Anna, Lombardo, Eleonora, Nicosia, Luca, Tantrige, Priyan, Rotili, Anna, Bozzini, Anna Carla, Penco, Silvia, Dominelli, Valeria, Trentin, Chiara, Ferrari, Federica, Farina, Mariagiorgia, Meneghetti, Lorenza, Latronico, Antuono, Abbate, Francesca, Origgi, Daniela, Carrafiello, Gianpaolo, Cassano, Enrico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 1372
container_title Journal of clinical medicine
container_volume 12
creator Pesapane, Filippo
De Marco, Paolo
Rapino, Anna
Lombardo, Eleonora
Nicosia, Luca
Tantrige, Priyan
Rotili, Anna
Bozzini, Anna Carla
Penco, Silvia
Dominelli, Valeria
Trentin, Chiara
Ferrari, Federica
Farina, Mariagiorgia
Meneghetti, Lorenza
Latronico, Antuono
Abbate, Francesca
Origgi, Daniela
Carrafiello, Gianpaolo
Cassano, Enrico
description Recent technological advances in the field of artificial intelligence hold promise in addressing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination and molecular profiling, prediction of lymph node metastases, and prognostication of treatment response and probability of recurrence. Radiomics is a quantitative approach to medical imaging, which aims to enhance the existing data available to clinicians by means of advanced mathematical analysis using artificial intelligence. Various published studies from different fields in imaging have highlighted the potential of radiomics to enhance clinical decision making. In this review, we describe the evolution of AI in breast imaging and its frontiers, focusing on handcrafted and deep learning radiomics. We present a typical workflow of a radiomics analysis and a practical "how-to" guide. Finally, we summarize the methodology and implementation of radiomics in breast cancer, based on the most recent scientific literature to help researchers and clinicians gain fundamental knowledge of this emerging technology. Alongside this, we discuss the current limitations of radiomics and challenges of integration into clinical practice with conceptual consistency, data curation, technical reproducibility, adequate accuracy, and clinical translation. The incorporation of radiomics with clinical, histopathological, and genomic information will enable physicians to move forward to a higher level of personalized management of patients with breast cancer.
doi_str_mv 10.3390/jcm12041372
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9963325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750335123</galeid><sourcerecordid>A750335123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-cae1466982b5a2dff879dd147776cf02d6b7df4fd29d6e2ecc0ea5ff260e71903</originalsourceid><addsrcrecordid>eNptkU1rGzEQhkVJqUOaU-9loZdAcKqPXWl1aUmcTwgEinsWsjRyZXYlV1on5N9Hxk5ql0gHiZln3mHeQegLwWeMSfx9YXpCcU2YoB_QIcVCjDFr2cHOf4SOc17gctq2pkR8QiPGW9ZI3B6in7fxqfqlrY-9N7ma6FDd9csUH6G6SKDzsA4ZSNWl1_MQs8-VDraaltzQQxg-o49OdxmOt-8R-n19NZ3cju8fbu4m5_djUws-jI0GUnMuWzprNLXOtUJaS2ohBDcOU8tnwrraWSotBwrGYNCNc5RjEERidoR-bHSXq1kP1pTWSXdqmXyv07OK2qv9TPB_1Dw-Kik5Y7QpAidbgRT_riAPqvfZQNfpAHGVFRUtxpwWiwr67T90EVcplPEKJWTDKKHsHzXXHSgfXCx9zVpUnYsGM9ZsqLN3qHItFMNjAOdLfK_gdFNgUsw5gXubkWC1XrnaWXmhv-7a8sa-Lpi9AMjbpKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779532123</pqid></control><display><type>article</type><title>How Radiomics Can Improve Breast Cancer Diagnosis and Treatment</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Pesapane, Filippo ; De Marco, Paolo ; Rapino, Anna ; Lombardo, Eleonora ; Nicosia, Luca ; Tantrige, Priyan ; Rotili, Anna ; Bozzini, Anna Carla ; Penco, Silvia ; Dominelli, Valeria ; Trentin, Chiara ; Ferrari, Federica ; Farina, Mariagiorgia ; Meneghetti, Lorenza ; Latronico, Antuono ; Abbate, Francesca ; Origgi, Daniela ; Carrafiello, Gianpaolo ; Cassano, Enrico</creator><creatorcontrib>Pesapane, Filippo ; De Marco, Paolo ; Rapino, Anna ; Lombardo, Eleonora ; Nicosia, Luca ; Tantrige, Priyan ; Rotili, Anna ; Bozzini, Anna Carla ; Penco, Silvia ; Dominelli, Valeria ; Trentin, Chiara ; Ferrari, Federica ; Farina, Mariagiorgia ; Meneghetti, Lorenza ; Latronico, Antuono ; Abbate, Francesca ; Origgi, Daniela ; Carrafiello, Gianpaolo ; Cassano, Enrico</creatorcontrib><description>Recent technological advances in the field of artificial intelligence hold promise in addressing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination and molecular profiling, prediction of lymph node metastases, and prognostication of treatment response and probability of recurrence. Radiomics is a quantitative approach to medical imaging, which aims to enhance the existing data available to clinicians by means of advanced mathematical analysis using artificial intelligence. Various published studies from different fields in imaging have highlighted the potential of radiomics to enhance clinical decision making. In this review, we describe the evolution of AI in breast imaging and its frontiers, focusing on handcrafted and deep learning radiomics. We present a typical workflow of a radiomics analysis and a practical "how-to" guide. Finally, we summarize the methodology and implementation of radiomics in breast cancer, based on the most recent scientific literature to help researchers and clinicians gain fundamental knowledge of this emerging technology. Alongside this, we discuss the current limitations of radiomics and challenges of integration into clinical practice with conceptual consistency, data curation, technical reproducibility, adequate accuracy, and clinical translation. The incorporation of radiomics with clinical, histopathological, and genomic information will enable physicians to move forward to a higher level of personalized management of patients with breast cancer.</description><identifier>ISSN: 2077-0383</identifier><identifier>EISSN: 2077-0383</identifier><identifier>DOI: 10.3390/jcm12041372</identifier><identifier>PMID: 36835908</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Artificial intelligence ; Biomarkers ; Biopsy ; Breast cancer ; Cancer therapies ; Care and treatment ; Clinical medicine ; Contrast agents ; Data mining ; Decision making ; Diagnosis ; Diagnostic imaging ; Hemodynamics ; Machine learning ; Magnetic resonance imaging ; Mammography ; Medical imaging ; Medical screening ; Methods ; Pneumothorax ; Precision medicine ; Radiomics ; Review ; Ultrasonic imaging</subject><ispartof>Journal of clinical medicine, 2023-02, Vol.12 (4), p.1372</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-cae1466982b5a2dff879dd147776cf02d6b7df4fd29d6e2ecc0ea5ff260e71903</citedby><cites>FETCH-LOGICAL-c476t-cae1466982b5a2dff879dd147776cf02d6b7df4fd29d6e2ecc0ea5ff260e71903</cites><orcidid>0000-0001-9366-0785 ; 0000-0003-3979-8075 ; 0000-0002-0374-5054 ; 0000-0002-3437-8939 ; 0000-0001-9439-9275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963325/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963325/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36835908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pesapane, Filippo</creatorcontrib><creatorcontrib>De Marco, Paolo</creatorcontrib><creatorcontrib>Rapino, Anna</creatorcontrib><creatorcontrib>Lombardo, Eleonora</creatorcontrib><creatorcontrib>Nicosia, Luca</creatorcontrib><creatorcontrib>Tantrige, Priyan</creatorcontrib><creatorcontrib>Rotili, Anna</creatorcontrib><creatorcontrib>Bozzini, Anna Carla</creatorcontrib><creatorcontrib>Penco, Silvia</creatorcontrib><creatorcontrib>Dominelli, Valeria</creatorcontrib><creatorcontrib>Trentin, Chiara</creatorcontrib><creatorcontrib>Ferrari, Federica</creatorcontrib><creatorcontrib>Farina, Mariagiorgia</creatorcontrib><creatorcontrib>Meneghetti, Lorenza</creatorcontrib><creatorcontrib>Latronico, Antuono</creatorcontrib><creatorcontrib>Abbate, Francesca</creatorcontrib><creatorcontrib>Origgi, Daniela</creatorcontrib><creatorcontrib>Carrafiello, Gianpaolo</creatorcontrib><creatorcontrib>Cassano, Enrico</creatorcontrib><title>How Radiomics Can Improve Breast Cancer Diagnosis and Treatment</title><title>Journal of clinical medicine</title><addtitle>J Clin Med</addtitle><description>Recent technological advances in the field of artificial intelligence hold promise in addressing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination and molecular profiling, prediction of lymph node metastases, and prognostication of treatment response and probability of recurrence. Radiomics is a quantitative approach to medical imaging, which aims to enhance the existing data available to clinicians by means of advanced mathematical analysis using artificial intelligence. Various published studies from different fields in imaging have highlighted the potential of radiomics to enhance clinical decision making. In this review, we describe the evolution of AI in breast imaging and its frontiers, focusing on handcrafted and deep learning radiomics. We present a typical workflow of a radiomics analysis and a practical "how-to" guide. Finally, we summarize the methodology and implementation of radiomics in breast cancer, based on the most recent scientific literature to help researchers and clinicians gain fundamental knowledge of this emerging technology. Alongside this, we discuss the current limitations of radiomics and challenges of integration into clinical practice with conceptual consistency, data curation, technical reproducibility, adequate accuracy, and clinical translation. The incorporation of radiomics with clinical, histopathological, and genomic information will enable physicians to move forward to a higher level of personalized management of patients with breast cancer.</description><subject>Artificial intelligence</subject><subject>Biomarkers</subject><subject>Biopsy</subject><subject>Breast cancer</subject><subject>Cancer therapies</subject><subject>Care and treatment</subject><subject>Clinical medicine</subject><subject>Contrast agents</subject><subject>Data mining</subject><subject>Decision making</subject><subject>Diagnosis</subject><subject>Diagnostic imaging</subject><subject>Hemodynamics</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Mammography</subject><subject>Medical imaging</subject><subject>Medical screening</subject><subject>Methods</subject><subject>Pneumothorax</subject><subject>Precision medicine</subject><subject>Radiomics</subject><subject>Review</subject><subject>Ultrasonic imaging</subject><issn>2077-0383</issn><issn>2077-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkU1rGzEQhkVJqUOaU-9loZdAcKqPXWl1aUmcTwgEinsWsjRyZXYlV1on5N9Hxk5ql0gHiZln3mHeQegLwWeMSfx9YXpCcU2YoB_QIcVCjDFr2cHOf4SOc17gctq2pkR8QiPGW9ZI3B6in7fxqfqlrY-9N7ma6FDd9csUH6G6SKDzsA4ZSNWl1_MQs8-VDraaltzQQxg-o49OdxmOt-8R-n19NZ3cju8fbu4m5_djUws-jI0GUnMuWzprNLXOtUJaS2ohBDcOU8tnwrraWSotBwrGYNCNc5RjEERidoR-bHSXq1kP1pTWSXdqmXyv07OK2qv9TPB_1Dw-Kik5Y7QpAidbgRT_riAPqvfZQNfpAHGVFRUtxpwWiwr67T90EVcplPEKJWTDKKHsHzXXHSgfXCx9zVpUnYsGM9ZsqLN3qHItFMNjAOdLfK_gdFNgUsw5gXubkWC1XrnaWXmhv-7a8sa-Lpi9AMjbpKg</recordid><startdate>20230209</startdate><enddate>20230209</enddate><creator>Pesapane, Filippo</creator><creator>De Marco, Paolo</creator><creator>Rapino, Anna</creator><creator>Lombardo, Eleonora</creator><creator>Nicosia, Luca</creator><creator>Tantrige, Priyan</creator><creator>Rotili, Anna</creator><creator>Bozzini, Anna Carla</creator><creator>Penco, Silvia</creator><creator>Dominelli, Valeria</creator><creator>Trentin, Chiara</creator><creator>Ferrari, Federica</creator><creator>Farina, Mariagiorgia</creator><creator>Meneghetti, Lorenza</creator><creator>Latronico, Antuono</creator><creator>Abbate, Francesca</creator><creator>Origgi, Daniela</creator><creator>Carrafiello, Gianpaolo</creator><creator>Cassano, Enrico</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9366-0785</orcidid><orcidid>https://orcid.org/0000-0003-3979-8075</orcidid><orcidid>https://orcid.org/0000-0002-0374-5054</orcidid><orcidid>https://orcid.org/0000-0002-3437-8939</orcidid><orcidid>https://orcid.org/0000-0001-9439-9275</orcidid></search><sort><creationdate>20230209</creationdate><title>How Radiomics Can Improve Breast Cancer Diagnosis and Treatment</title><author>Pesapane, Filippo ; De Marco, Paolo ; Rapino, Anna ; Lombardo, Eleonora ; Nicosia, Luca ; Tantrige, Priyan ; Rotili, Anna ; Bozzini, Anna Carla ; Penco, Silvia ; Dominelli, Valeria ; Trentin, Chiara ; Ferrari, Federica ; Farina, Mariagiorgia ; Meneghetti, Lorenza ; Latronico, Antuono ; Abbate, Francesca ; Origgi, Daniela ; Carrafiello, Gianpaolo ; Cassano, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-cae1466982b5a2dff879dd147776cf02d6b7df4fd29d6e2ecc0ea5ff260e71903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Biomarkers</topic><topic>Biopsy</topic><topic>Breast cancer</topic><topic>Cancer therapies</topic><topic>Care and treatment</topic><topic>Clinical medicine</topic><topic>Contrast agents</topic><topic>Data mining</topic><topic>Decision making</topic><topic>Diagnosis</topic><topic>Diagnostic imaging</topic><topic>Hemodynamics</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Mammography</topic><topic>Medical imaging</topic><topic>Medical screening</topic><topic>Methods</topic><topic>Pneumothorax</topic><topic>Precision medicine</topic><topic>Radiomics</topic><topic>Review</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pesapane, Filippo</creatorcontrib><creatorcontrib>De Marco, Paolo</creatorcontrib><creatorcontrib>Rapino, Anna</creatorcontrib><creatorcontrib>Lombardo, Eleonora</creatorcontrib><creatorcontrib>Nicosia, Luca</creatorcontrib><creatorcontrib>Tantrige, Priyan</creatorcontrib><creatorcontrib>Rotili, Anna</creatorcontrib><creatorcontrib>Bozzini, Anna Carla</creatorcontrib><creatorcontrib>Penco, Silvia</creatorcontrib><creatorcontrib>Dominelli, Valeria</creatorcontrib><creatorcontrib>Trentin, Chiara</creatorcontrib><creatorcontrib>Ferrari, Federica</creatorcontrib><creatorcontrib>Farina, Mariagiorgia</creatorcontrib><creatorcontrib>Meneghetti, Lorenza</creatorcontrib><creatorcontrib>Latronico, Antuono</creatorcontrib><creatorcontrib>Abbate, Francesca</creatorcontrib><creatorcontrib>Origgi, Daniela</creatorcontrib><creatorcontrib>Carrafiello, Gianpaolo</creatorcontrib><creatorcontrib>Cassano, Enrico</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pesapane, Filippo</au><au>De Marco, Paolo</au><au>Rapino, Anna</au><au>Lombardo, Eleonora</au><au>Nicosia, Luca</au><au>Tantrige, Priyan</au><au>Rotili, Anna</au><au>Bozzini, Anna Carla</au><au>Penco, Silvia</au><au>Dominelli, Valeria</au><au>Trentin, Chiara</au><au>Ferrari, Federica</au><au>Farina, Mariagiorgia</au><au>Meneghetti, Lorenza</au><au>Latronico, Antuono</au><au>Abbate, Francesca</au><au>Origgi, Daniela</au><au>Carrafiello, Gianpaolo</au><au>Cassano, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Radiomics Can Improve Breast Cancer Diagnosis and Treatment</atitle><jtitle>Journal of clinical medicine</jtitle><addtitle>J Clin Med</addtitle><date>2023-02-09</date><risdate>2023</risdate><volume>12</volume><issue>4</issue><spage>1372</spage><pages>1372-</pages><issn>2077-0383</issn><eissn>2077-0383</eissn><abstract>Recent technological advances in the field of artificial intelligence hold promise in addressing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination and molecular profiling, prediction of lymph node metastases, and prognostication of treatment response and probability of recurrence. Radiomics is a quantitative approach to medical imaging, which aims to enhance the existing data available to clinicians by means of advanced mathematical analysis using artificial intelligence. Various published studies from different fields in imaging have highlighted the potential of radiomics to enhance clinical decision making. In this review, we describe the evolution of AI in breast imaging and its frontiers, focusing on handcrafted and deep learning radiomics. We present a typical workflow of a radiomics analysis and a practical "how-to" guide. Finally, we summarize the methodology and implementation of radiomics in breast cancer, based on the most recent scientific literature to help researchers and clinicians gain fundamental knowledge of this emerging technology. Alongside this, we discuss the current limitations of radiomics and challenges of integration into clinical practice with conceptual consistency, data curation, technical reproducibility, adequate accuracy, and clinical translation. The incorporation of radiomics with clinical, histopathological, and genomic information will enable physicians to move forward to a higher level of personalized management of patients with breast cancer.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36835908</pmid><doi>10.3390/jcm12041372</doi><orcidid>https://orcid.org/0000-0001-9366-0785</orcidid><orcidid>https://orcid.org/0000-0003-3979-8075</orcidid><orcidid>https://orcid.org/0000-0002-0374-5054</orcidid><orcidid>https://orcid.org/0000-0002-3437-8939</orcidid><orcidid>https://orcid.org/0000-0001-9439-9275</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0383
ispartof Journal of clinical medicine, 2023-02, Vol.12 (4), p.1372
issn 2077-0383
2077-0383
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9963325
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Artificial intelligence
Biomarkers
Biopsy
Breast cancer
Cancer therapies
Care and treatment
Clinical medicine
Contrast agents
Data mining
Decision making
Diagnosis
Diagnostic imaging
Hemodynamics
Machine learning
Magnetic resonance imaging
Mammography
Medical imaging
Medical screening
Methods
Pneumothorax
Precision medicine
Radiomics
Review
Ultrasonic imaging
title How Radiomics Can Improve Breast Cancer Diagnosis and Treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Radiomics%20Can%20Improve%20Breast%20Cancer%20Diagnosis%20and%20Treatment&rft.jtitle=Journal%20of%20clinical%20medicine&rft.au=Pesapane,%20Filippo&rft.date=2023-02-09&rft.volume=12&rft.issue=4&rft.spage=1372&rft.pages=1372-&rft.issn=2077-0383&rft.eissn=2077-0383&rft_id=info:doi/10.3390/jcm12041372&rft_dat=%3Cgale_pubme%3EA750335123%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779532123&rft_id=info:pmid/36835908&rft_galeid=A750335123&rfr_iscdi=true