How Radiomics Can Improve Breast Cancer Diagnosis and Treatment
Recent technological advances in the field of artificial intelligence hold promise in addressing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination and molecular profiling, prediction of lymph node metastases, and prognostication of treatment response and...
Gespeichert in:
Veröffentlicht in: | Journal of clinical medicine 2023-02, Vol.12 (4), p.1372 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 1372 |
container_title | Journal of clinical medicine |
container_volume | 12 |
creator | Pesapane, Filippo De Marco, Paolo Rapino, Anna Lombardo, Eleonora Nicosia, Luca Tantrige, Priyan Rotili, Anna Bozzini, Anna Carla Penco, Silvia Dominelli, Valeria Trentin, Chiara Ferrari, Federica Farina, Mariagiorgia Meneghetti, Lorenza Latronico, Antuono Abbate, Francesca Origgi, Daniela Carrafiello, Gianpaolo Cassano, Enrico |
description | Recent technological advances in the field of artificial intelligence hold promise in addressing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination and molecular profiling, prediction of lymph node metastases, and prognostication of treatment response and probability of recurrence. Radiomics is a quantitative approach to medical imaging, which aims to enhance the existing data available to clinicians by means of advanced mathematical analysis using artificial intelligence. Various published studies from different fields in imaging have highlighted the potential of radiomics to enhance clinical decision making. In this review, we describe the evolution of AI in breast imaging and its frontiers, focusing on handcrafted and deep learning radiomics. We present a typical workflow of a radiomics analysis and a practical "how-to" guide. Finally, we summarize the methodology and implementation of radiomics in breast cancer, based on the most recent scientific literature to help researchers and clinicians gain fundamental knowledge of this emerging technology. Alongside this, we discuss the current limitations of radiomics and challenges of integration into clinical practice with conceptual consistency, data curation, technical reproducibility, adequate accuracy, and clinical translation. The incorporation of radiomics with clinical, histopathological, and genomic information will enable physicians to move forward to a higher level of personalized management of patients with breast cancer. |
doi_str_mv | 10.3390/jcm12041372 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9963325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750335123</galeid><sourcerecordid>A750335123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-cae1466982b5a2dff879dd147776cf02d6b7df4fd29d6e2ecc0ea5ff260e71903</originalsourceid><addsrcrecordid>eNptkU1rGzEQhkVJqUOaU-9loZdAcKqPXWl1aUmcTwgEinsWsjRyZXYlV1on5N9Hxk5ql0gHiZln3mHeQegLwWeMSfx9YXpCcU2YoB_QIcVCjDFr2cHOf4SOc17gctq2pkR8QiPGW9ZI3B6in7fxqfqlrY-9N7ma6FDd9csUH6G6SKDzsA4ZSNWl1_MQs8-VDraaltzQQxg-o49OdxmOt-8R-n19NZ3cju8fbu4m5_djUws-jI0GUnMuWzprNLXOtUJaS2ohBDcOU8tnwrraWSotBwrGYNCNc5RjEERidoR-bHSXq1kP1pTWSXdqmXyv07OK2qv9TPB_1Dw-Kik5Y7QpAidbgRT_riAPqvfZQNfpAHGVFRUtxpwWiwr67T90EVcplPEKJWTDKKHsHzXXHSgfXCx9zVpUnYsGM9ZsqLN3qHItFMNjAOdLfK_gdFNgUsw5gXubkWC1XrnaWXmhv-7a8sa-Lpi9AMjbpKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779532123</pqid></control><display><type>article</type><title>How Radiomics Can Improve Breast Cancer Diagnosis and Treatment</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Pesapane, Filippo ; De Marco, Paolo ; Rapino, Anna ; Lombardo, Eleonora ; Nicosia, Luca ; Tantrige, Priyan ; Rotili, Anna ; Bozzini, Anna Carla ; Penco, Silvia ; Dominelli, Valeria ; Trentin, Chiara ; Ferrari, Federica ; Farina, Mariagiorgia ; Meneghetti, Lorenza ; Latronico, Antuono ; Abbate, Francesca ; Origgi, Daniela ; Carrafiello, Gianpaolo ; Cassano, Enrico</creator><creatorcontrib>Pesapane, Filippo ; De Marco, Paolo ; Rapino, Anna ; Lombardo, Eleonora ; Nicosia, Luca ; Tantrige, Priyan ; Rotili, Anna ; Bozzini, Anna Carla ; Penco, Silvia ; Dominelli, Valeria ; Trentin, Chiara ; Ferrari, Federica ; Farina, Mariagiorgia ; Meneghetti, Lorenza ; Latronico, Antuono ; Abbate, Francesca ; Origgi, Daniela ; Carrafiello, Gianpaolo ; Cassano, Enrico</creatorcontrib><description>Recent technological advances in the field of artificial intelligence hold promise in addressing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination and molecular profiling, prediction of lymph node metastases, and prognostication of treatment response and probability of recurrence. Radiomics is a quantitative approach to medical imaging, which aims to enhance the existing data available to clinicians by means of advanced mathematical analysis using artificial intelligence. Various published studies from different fields in imaging have highlighted the potential of radiomics to enhance clinical decision making. In this review, we describe the evolution of AI in breast imaging and its frontiers, focusing on handcrafted and deep learning radiomics. We present a typical workflow of a radiomics analysis and a practical "how-to" guide. Finally, we summarize the methodology and implementation of radiomics in breast cancer, based on the most recent scientific literature to help researchers and clinicians gain fundamental knowledge of this emerging technology. Alongside this, we discuss the current limitations of radiomics and challenges of integration into clinical practice with conceptual consistency, data curation, technical reproducibility, adequate accuracy, and clinical translation. The incorporation of radiomics with clinical, histopathological, and genomic information will enable physicians to move forward to a higher level of personalized management of patients with breast cancer.</description><identifier>ISSN: 2077-0383</identifier><identifier>EISSN: 2077-0383</identifier><identifier>DOI: 10.3390/jcm12041372</identifier><identifier>PMID: 36835908</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Artificial intelligence ; Biomarkers ; Biopsy ; Breast cancer ; Cancer therapies ; Care and treatment ; Clinical medicine ; Contrast agents ; Data mining ; Decision making ; Diagnosis ; Diagnostic imaging ; Hemodynamics ; Machine learning ; Magnetic resonance imaging ; Mammography ; Medical imaging ; Medical screening ; Methods ; Pneumothorax ; Precision medicine ; Radiomics ; Review ; Ultrasonic imaging</subject><ispartof>Journal of clinical medicine, 2023-02, Vol.12 (4), p.1372</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-cae1466982b5a2dff879dd147776cf02d6b7df4fd29d6e2ecc0ea5ff260e71903</citedby><cites>FETCH-LOGICAL-c476t-cae1466982b5a2dff879dd147776cf02d6b7df4fd29d6e2ecc0ea5ff260e71903</cites><orcidid>0000-0001-9366-0785 ; 0000-0003-3979-8075 ; 0000-0002-0374-5054 ; 0000-0002-3437-8939 ; 0000-0001-9439-9275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963325/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963325/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36835908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pesapane, Filippo</creatorcontrib><creatorcontrib>De Marco, Paolo</creatorcontrib><creatorcontrib>Rapino, Anna</creatorcontrib><creatorcontrib>Lombardo, Eleonora</creatorcontrib><creatorcontrib>Nicosia, Luca</creatorcontrib><creatorcontrib>Tantrige, Priyan</creatorcontrib><creatorcontrib>Rotili, Anna</creatorcontrib><creatorcontrib>Bozzini, Anna Carla</creatorcontrib><creatorcontrib>Penco, Silvia</creatorcontrib><creatorcontrib>Dominelli, Valeria</creatorcontrib><creatorcontrib>Trentin, Chiara</creatorcontrib><creatorcontrib>Ferrari, Federica</creatorcontrib><creatorcontrib>Farina, Mariagiorgia</creatorcontrib><creatorcontrib>Meneghetti, Lorenza</creatorcontrib><creatorcontrib>Latronico, Antuono</creatorcontrib><creatorcontrib>Abbate, Francesca</creatorcontrib><creatorcontrib>Origgi, Daniela</creatorcontrib><creatorcontrib>Carrafiello, Gianpaolo</creatorcontrib><creatorcontrib>Cassano, Enrico</creatorcontrib><title>How Radiomics Can Improve Breast Cancer Diagnosis and Treatment</title><title>Journal of clinical medicine</title><addtitle>J Clin Med</addtitle><description>Recent technological advances in the field of artificial intelligence hold promise in addressing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination and molecular profiling, prediction of lymph node metastases, and prognostication of treatment response and probability of recurrence. Radiomics is a quantitative approach to medical imaging, which aims to enhance the existing data available to clinicians by means of advanced mathematical analysis using artificial intelligence. Various published studies from different fields in imaging have highlighted the potential of radiomics to enhance clinical decision making. In this review, we describe the evolution of AI in breast imaging and its frontiers, focusing on handcrafted and deep learning radiomics. We present a typical workflow of a radiomics analysis and a practical "how-to" guide. Finally, we summarize the methodology and implementation of radiomics in breast cancer, based on the most recent scientific literature to help researchers and clinicians gain fundamental knowledge of this emerging technology. Alongside this, we discuss the current limitations of radiomics and challenges of integration into clinical practice with conceptual consistency, data curation, technical reproducibility, adequate accuracy, and clinical translation. The incorporation of radiomics with clinical, histopathological, and genomic information will enable physicians to move forward to a higher level of personalized management of patients with breast cancer.</description><subject>Artificial intelligence</subject><subject>Biomarkers</subject><subject>Biopsy</subject><subject>Breast cancer</subject><subject>Cancer therapies</subject><subject>Care and treatment</subject><subject>Clinical medicine</subject><subject>Contrast agents</subject><subject>Data mining</subject><subject>Decision making</subject><subject>Diagnosis</subject><subject>Diagnostic imaging</subject><subject>Hemodynamics</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Mammography</subject><subject>Medical imaging</subject><subject>Medical screening</subject><subject>Methods</subject><subject>Pneumothorax</subject><subject>Precision medicine</subject><subject>Radiomics</subject><subject>Review</subject><subject>Ultrasonic imaging</subject><issn>2077-0383</issn><issn>2077-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkU1rGzEQhkVJqUOaU-9loZdAcKqPXWl1aUmcTwgEinsWsjRyZXYlV1on5N9Hxk5ql0gHiZln3mHeQegLwWeMSfx9YXpCcU2YoB_QIcVCjDFr2cHOf4SOc17gctq2pkR8QiPGW9ZI3B6in7fxqfqlrY-9N7ma6FDd9csUH6G6SKDzsA4ZSNWl1_MQs8-VDraaltzQQxg-o49OdxmOt-8R-n19NZ3cju8fbu4m5_djUws-jI0GUnMuWzprNLXOtUJaS2ohBDcOU8tnwrraWSotBwrGYNCNc5RjEERidoR-bHSXq1kP1pTWSXdqmXyv07OK2qv9TPB_1Dw-Kik5Y7QpAidbgRT_riAPqvfZQNfpAHGVFRUtxpwWiwr67T90EVcplPEKJWTDKKHsHzXXHSgfXCx9zVpUnYsGM9ZsqLN3qHItFMNjAOdLfK_gdFNgUsw5gXubkWC1XrnaWXmhv-7a8sa-Lpi9AMjbpKg</recordid><startdate>20230209</startdate><enddate>20230209</enddate><creator>Pesapane, Filippo</creator><creator>De Marco, Paolo</creator><creator>Rapino, Anna</creator><creator>Lombardo, Eleonora</creator><creator>Nicosia, Luca</creator><creator>Tantrige, Priyan</creator><creator>Rotili, Anna</creator><creator>Bozzini, Anna Carla</creator><creator>Penco, Silvia</creator><creator>Dominelli, Valeria</creator><creator>Trentin, Chiara</creator><creator>Ferrari, Federica</creator><creator>Farina, Mariagiorgia</creator><creator>Meneghetti, Lorenza</creator><creator>Latronico, Antuono</creator><creator>Abbate, Francesca</creator><creator>Origgi, Daniela</creator><creator>Carrafiello, Gianpaolo</creator><creator>Cassano, Enrico</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9366-0785</orcidid><orcidid>https://orcid.org/0000-0003-3979-8075</orcidid><orcidid>https://orcid.org/0000-0002-0374-5054</orcidid><orcidid>https://orcid.org/0000-0002-3437-8939</orcidid><orcidid>https://orcid.org/0000-0001-9439-9275</orcidid></search><sort><creationdate>20230209</creationdate><title>How Radiomics Can Improve Breast Cancer Diagnosis and Treatment</title><author>Pesapane, Filippo ; De Marco, Paolo ; Rapino, Anna ; Lombardo, Eleonora ; Nicosia, Luca ; Tantrige, Priyan ; Rotili, Anna ; Bozzini, Anna Carla ; Penco, Silvia ; Dominelli, Valeria ; Trentin, Chiara ; Ferrari, Federica ; Farina, Mariagiorgia ; Meneghetti, Lorenza ; Latronico, Antuono ; Abbate, Francesca ; Origgi, Daniela ; Carrafiello, Gianpaolo ; Cassano, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-cae1466982b5a2dff879dd147776cf02d6b7df4fd29d6e2ecc0ea5ff260e71903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Biomarkers</topic><topic>Biopsy</topic><topic>Breast cancer</topic><topic>Cancer therapies</topic><topic>Care and treatment</topic><topic>Clinical medicine</topic><topic>Contrast agents</topic><topic>Data mining</topic><topic>Decision making</topic><topic>Diagnosis</topic><topic>Diagnostic imaging</topic><topic>Hemodynamics</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Mammography</topic><topic>Medical imaging</topic><topic>Medical screening</topic><topic>Methods</topic><topic>Pneumothorax</topic><topic>Precision medicine</topic><topic>Radiomics</topic><topic>Review</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pesapane, Filippo</creatorcontrib><creatorcontrib>De Marco, Paolo</creatorcontrib><creatorcontrib>Rapino, Anna</creatorcontrib><creatorcontrib>Lombardo, Eleonora</creatorcontrib><creatorcontrib>Nicosia, Luca</creatorcontrib><creatorcontrib>Tantrige, Priyan</creatorcontrib><creatorcontrib>Rotili, Anna</creatorcontrib><creatorcontrib>Bozzini, Anna Carla</creatorcontrib><creatorcontrib>Penco, Silvia</creatorcontrib><creatorcontrib>Dominelli, Valeria</creatorcontrib><creatorcontrib>Trentin, Chiara</creatorcontrib><creatorcontrib>Ferrari, Federica</creatorcontrib><creatorcontrib>Farina, Mariagiorgia</creatorcontrib><creatorcontrib>Meneghetti, Lorenza</creatorcontrib><creatorcontrib>Latronico, Antuono</creatorcontrib><creatorcontrib>Abbate, Francesca</creatorcontrib><creatorcontrib>Origgi, Daniela</creatorcontrib><creatorcontrib>Carrafiello, Gianpaolo</creatorcontrib><creatorcontrib>Cassano, Enrico</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pesapane, Filippo</au><au>De Marco, Paolo</au><au>Rapino, Anna</au><au>Lombardo, Eleonora</au><au>Nicosia, Luca</au><au>Tantrige, Priyan</au><au>Rotili, Anna</au><au>Bozzini, Anna Carla</au><au>Penco, Silvia</au><au>Dominelli, Valeria</au><au>Trentin, Chiara</au><au>Ferrari, Federica</au><au>Farina, Mariagiorgia</au><au>Meneghetti, Lorenza</au><au>Latronico, Antuono</au><au>Abbate, Francesca</au><au>Origgi, Daniela</au><au>Carrafiello, Gianpaolo</au><au>Cassano, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Radiomics Can Improve Breast Cancer Diagnosis and Treatment</atitle><jtitle>Journal of clinical medicine</jtitle><addtitle>J Clin Med</addtitle><date>2023-02-09</date><risdate>2023</risdate><volume>12</volume><issue>4</issue><spage>1372</spage><pages>1372-</pages><issn>2077-0383</issn><eissn>2077-0383</eissn><abstract>Recent technological advances in the field of artificial intelligence hold promise in addressing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination and molecular profiling, prediction of lymph node metastases, and prognostication of treatment response and probability of recurrence. Radiomics is a quantitative approach to medical imaging, which aims to enhance the existing data available to clinicians by means of advanced mathematical analysis using artificial intelligence. Various published studies from different fields in imaging have highlighted the potential of radiomics to enhance clinical decision making. In this review, we describe the evolution of AI in breast imaging and its frontiers, focusing on handcrafted and deep learning radiomics. We present a typical workflow of a radiomics analysis and a practical "how-to" guide. Finally, we summarize the methodology and implementation of radiomics in breast cancer, based on the most recent scientific literature to help researchers and clinicians gain fundamental knowledge of this emerging technology. Alongside this, we discuss the current limitations of radiomics and challenges of integration into clinical practice with conceptual consistency, data curation, technical reproducibility, adequate accuracy, and clinical translation. The incorporation of radiomics with clinical, histopathological, and genomic information will enable physicians to move forward to a higher level of personalized management of patients with breast cancer.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36835908</pmid><doi>10.3390/jcm12041372</doi><orcidid>https://orcid.org/0000-0001-9366-0785</orcidid><orcidid>https://orcid.org/0000-0003-3979-8075</orcidid><orcidid>https://orcid.org/0000-0002-0374-5054</orcidid><orcidid>https://orcid.org/0000-0002-3437-8939</orcidid><orcidid>https://orcid.org/0000-0001-9439-9275</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0383 |
ispartof | Journal of clinical medicine, 2023-02, Vol.12 (4), p.1372 |
issn | 2077-0383 2077-0383 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9963325 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Artificial intelligence Biomarkers Biopsy Breast cancer Cancer therapies Care and treatment Clinical medicine Contrast agents Data mining Decision making Diagnosis Diagnostic imaging Hemodynamics Machine learning Magnetic resonance imaging Mammography Medical imaging Medical screening Methods Pneumothorax Precision medicine Radiomics Review Ultrasonic imaging |
title | How Radiomics Can Improve Breast Cancer Diagnosis and Treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Radiomics%20Can%20Improve%20Breast%20Cancer%20Diagnosis%20and%20Treatment&rft.jtitle=Journal%20of%20clinical%20medicine&rft.au=Pesapane,%20Filippo&rft.date=2023-02-09&rft.volume=12&rft.issue=4&rft.spage=1372&rft.pages=1372-&rft.issn=2077-0383&rft.eissn=2077-0383&rft_id=info:doi/10.3390/jcm12041372&rft_dat=%3Cgale_pubme%3EA750335123%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779532123&rft_id=info:pmid/36835908&rft_galeid=A750335123&rfr_iscdi=true |