TRF2 rescues telomere attrition and prolongs cell survival in Duchenne muscular dystrophy cardiomyocytes derived from human iPSCs
Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by the lack of dystrophin. Heart failure, driven by cardiomyocyte death, fibrosis, and the development of dilated cardiomyopathy, is the leading cause of death in DMD patients. Current treatments decrease the mechanical load...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2023-02, Vol.120 (6), p.e2209967120 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | e2209967120 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 120 |
creator | Eguchi, Asuka Gonzalez, Adriana Fernanda G S Torres-Bigio, Sofía I Koleckar, Kassie Birnbaum, Foster Zhang, Joe Z Wang, Vicky Y Wu, Joseph C Artandi, Steven E Blau, Helen M |
description | Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by the lack of dystrophin. Heart failure, driven by cardiomyocyte death, fibrosis, and the development of dilated cardiomyopathy, is the leading cause of death in DMD patients. Current treatments decrease the mechanical load on the heart but do not address the root cause of dilated cardiomyopathy: cardiomyocyte death. Previously, we showed that telomere shortening is a hallmark of DMD cardiomyocytes. Here, we test whether prevention of telomere attrition is possible in cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPSC-CMs) and if preventing telomere shortening impacts cardiomyocyte function. We observe reduced cell size, nuclear size, and sarcomere density in DMD iPSC-CMs compared with healthy isogenic controls. We find that expression of just one telomere-binding protein, telomeric repeat-binding factor 2 (TRF2), a core component of the shelterin complex, prevents telomere attrition and rescues deficiencies in cell size as well as sarcomere density. We employ a bioengineered platform to micropattern cardiomyocytes for calcium imaging and perform Southern blots of telomere restriction fragments, the gold standard for telomere length assessments. Importantly, preservation of telomere lengths in DMD cardiomyocytes improves their viability. These data provide evidence that preventing telomere attrition ameliorates deficits in cell morphology, activation of the DNA damage response, and premature cell death, suggesting that TRF2 is a key player in DMD-associated cardiac failure. |
doi_str_mv | 10.1073/pnas.2209967120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9963063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771333353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-20fa3bb8cdfa7be6486fd1db780a46a4cb4d0796dd5f6d044930cb2cb4941bdb3</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhS0EosPAmh2yxIZN2uvHJPEGCU0pIFUCQVlbfqXjKrGDnYyULb-E38Ivw1FLeXhjyffz0bnnIPScwCmBhp2NQeVTSkGIuiEUHqANAUGqmgt4iDYAtKlaTvkJepLzDQCIXQuP0QkrtBCUbND3q88XFCeXzewynlwfB5ccVtOU_ORjwCpYPKbYx3CdsXF9j_Ocjv6oeuwDPp_NwYXg8DAXhV4lbJc8pTgeFmxUsj4OSzTLVLStS_7oLO5SHH7-OMyDCth_-rLPT9GjTvXZPbu7t-jrxdur_fvq8uO7D_s3l5XhlEwVhU4xrVtjO9VoV_O27iyxumlB8Vpxo7mFRtTW7rraAueCgdG0PAtOtNVsi17f6o6zHpw1LkxJ9XJMflBpkVF5-e8k-IO8jkdZwmVQsyLw6k4gxW8lrkkOPq-RqODinCVtGsLK2a3oy__QmzinUNZbqdWRKP626OyWMinmnFx3b4aAXPuVa7_yT7_lx4u_d7jnfxfKfgGnP6bj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774941949</pqid></control><display><type>article</type><title>TRF2 rescues telomere attrition and prolongs cell survival in Duchenne muscular dystrophy cardiomyocytes derived from human iPSCs</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Eguchi, Asuka ; Gonzalez, Adriana Fernanda G S ; Torres-Bigio, Sofía I ; Koleckar, Kassie ; Birnbaum, Foster ; Zhang, Joe Z ; Wang, Vicky Y ; Wu, Joseph C ; Artandi, Steven E ; Blau, Helen M</creator><creatorcontrib>Eguchi, Asuka ; Gonzalez, Adriana Fernanda G S ; Torres-Bigio, Sofía I ; Koleckar, Kassie ; Birnbaum, Foster ; Zhang, Joe Z ; Wang, Vicky Y ; Wu, Joseph C ; Artandi, Steven E ; Blau, Helen M</creatorcontrib><description>Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by the lack of dystrophin. Heart failure, driven by cardiomyocyte death, fibrosis, and the development of dilated cardiomyopathy, is the leading cause of death in DMD patients. Current treatments decrease the mechanical load on the heart but do not address the root cause of dilated cardiomyopathy: cardiomyocyte death. Previously, we showed that telomere shortening is a hallmark of DMD cardiomyocytes. Here, we test whether prevention of telomere attrition is possible in cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPSC-CMs) and if preventing telomere shortening impacts cardiomyocyte function. We observe reduced cell size, nuclear size, and sarcomere density in DMD iPSC-CMs compared with healthy isogenic controls. We find that expression of just one telomere-binding protein, telomeric repeat-binding factor 2 (TRF2), a core component of the shelterin complex, prevents telomere attrition and rescues deficiencies in cell size as well as sarcomere density. We employ a bioengineered platform to micropattern cardiomyocytes for calcium imaging and perform Southern blots of telomere restriction fragments, the gold standard for telomere length assessments. Importantly, preservation of telomere lengths in DMD cardiomyocytes improves their viability. These data provide evidence that preventing telomere attrition ameliorates deficits in cell morphology, activation of the DNA damage response, and premature cell death, suggesting that TRF2 is a key player in DMD-associated cardiac failure.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2209967120</identifier><identifier>PMID: 36719921</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bioengineering ; Biological Sciences ; Calcium imaging ; Cardiomyocytes ; Cardiomyopathy ; Cardiomyopathy, Dilated - genetics ; Cell activation ; Cell death ; Cell morphology ; Cell size ; Cell Survival ; Congestive heart failure ; Cytology ; Density ; Dilated cardiomyopathy ; DNA damage ; Duchenne's muscular dystrophy ; Dystrophin ; Dystrophin - genetics ; Dystrophy ; Fibrosis ; Heart Failure - metabolism ; Humans ; Induced Pluripotent Stem Cells - metabolism ; Mechanical properties ; Mortality ; Muscles ; Muscular dystrophy ; Muscular Dystrophy, Duchenne - metabolism ; Myocytes, Cardiac - metabolism ; Pluripotency ; Stem cells ; Telomere - genetics ; Telomere - metabolism ; Telomere-binding protein ; TRF2 protein</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-02, Vol.120 (6), p.e2209967120</ispartof><rights>Copyright National Academy of Sciences Feb 7, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-20fa3bb8cdfa7be6486fd1db780a46a4cb4d0796dd5f6d044930cb2cb4941bdb3</citedby><cites>FETCH-LOGICAL-c421t-20fa3bb8cdfa7be6486fd1db780a46a4cb4d0796dd5f6d044930cb2cb4941bdb3</cites><orcidid>0000-0002-6068-8041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963063/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963063/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36719921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eguchi, Asuka</creatorcontrib><creatorcontrib>Gonzalez, Adriana Fernanda G S</creatorcontrib><creatorcontrib>Torres-Bigio, Sofía I</creatorcontrib><creatorcontrib>Koleckar, Kassie</creatorcontrib><creatorcontrib>Birnbaum, Foster</creatorcontrib><creatorcontrib>Zhang, Joe Z</creatorcontrib><creatorcontrib>Wang, Vicky Y</creatorcontrib><creatorcontrib>Wu, Joseph C</creatorcontrib><creatorcontrib>Artandi, Steven E</creatorcontrib><creatorcontrib>Blau, Helen M</creatorcontrib><title>TRF2 rescues telomere attrition and prolongs cell survival in Duchenne muscular dystrophy cardiomyocytes derived from human iPSCs</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by the lack of dystrophin. Heart failure, driven by cardiomyocyte death, fibrosis, and the development of dilated cardiomyopathy, is the leading cause of death in DMD patients. Current treatments decrease the mechanical load on the heart but do not address the root cause of dilated cardiomyopathy: cardiomyocyte death. Previously, we showed that telomere shortening is a hallmark of DMD cardiomyocytes. Here, we test whether prevention of telomere attrition is possible in cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPSC-CMs) and if preventing telomere shortening impacts cardiomyocyte function. We observe reduced cell size, nuclear size, and sarcomere density in DMD iPSC-CMs compared with healthy isogenic controls. We find that expression of just one telomere-binding protein, telomeric repeat-binding factor 2 (TRF2), a core component of the shelterin complex, prevents telomere attrition and rescues deficiencies in cell size as well as sarcomere density. We employ a bioengineered platform to micropattern cardiomyocytes for calcium imaging and perform Southern blots of telomere restriction fragments, the gold standard for telomere length assessments. Importantly, preservation of telomere lengths in DMD cardiomyocytes improves their viability. These data provide evidence that preventing telomere attrition ameliorates deficits in cell morphology, activation of the DNA damage response, and premature cell death, suggesting that TRF2 is a key player in DMD-associated cardiac failure.</description><subject>Bioengineering</subject><subject>Biological Sciences</subject><subject>Calcium imaging</subject><subject>Cardiomyocytes</subject><subject>Cardiomyopathy</subject><subject>Cardiomyopathy, Dilated - genetics</subject><subject>Cell activation</subject><subject>Cell death</subject><subject>Cell morphology</subject><subject>Cell size</subject><subject>Cell Survival</subject><subject>Congestive heart failure</subject><subject>Cytology</subject><subject>Density</subject><subject>Dilated cardiomyopathy</subject><subject>DNA damage</subject><subject>Duchenne's muscular dystrophy</subject><subject>Dystrophin</subject><subject>Dystrophin - genetics</subject><subject>Dystrophy</subject><subject>Fibrosis</subject><subject>Heart Failure - metabolism</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Mechanical properties</subject><subject>Mortality</subject><subject>Muscles</subject><subject>Muscular dystrophy</subject><subject>Muscular Dystrophy, Duchenne - metabolism</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Pluripotency</subject><subject>Stem cells</subject><subject>Telomere - genetics</subject><subject>Telomere - metabolism</subject><subject>Telomere-binding protein</subject><subject>TRF2 protein</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtv1DAUhS0EosPAmh2yxIZN2uvHJPEGCU0pIFUCQVlbfqXjKrGDnYyULb-E38Ivw1FLeXhjyffz0bnnIPScwCmBhp2NQeVTSkGIuiEUHqANAUGqmgt4iDYAtKlaTvkJepLzDQCIXQuP0QkrtBCUbND3q88XFCeXzewynlwfB5ccVtOU_ORjwCpYPKbYx3CdsXF9j_Ocjv6oeuwDPp_NwYXg8DAXhV4lbJc8pTgeFmxUsj4OSzTLVLStS_7oLO5SHH7-OMyDCth_-rLPT9GjTvXZPbu7t-jrxdur_fvq8uO7D_s3l5XhlEwVhU4xrVtjO9VoV_O27iyxumlB8Vpxo7mFRtTW7rraAueCgdG0PAtOtNVsi17f6o6zHpw1LkxJ9XJMflBpkVF5-e8k-IO8jkdZwmVQsyLw6k4gxW8lrkkOPq-RqODinCVtGsLK2a3oy__QmzinUNZbqdWRKP626OyWMinmnFx3b4aAXPuVa7_yT7_lx4u_d7jnfxfKfgGnP6bj</recordid><startdate>20230207</startdate><enddate>20230207</enddate><creator>Eguchi, Asuka</creator><creator>Gonzalez, Adriana Fernanda G S</creator><creator>Torres-Bigio, Sofía I</creator><creator>Koleckar, Kassie</creator><creator>Birnbaum, Foster</creator><creator>Zhang, Joe Z</creator><creator>Wang, Vicky Y</creator><creator>Wu, Joseph C</creator><creator>Artandi, Steven E</creator><creator>Blau, Helen M</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6068-8041</orcidid></search><sort><creationdate>20230207</creationdate><title>TRF2 rescues telomere attrition and prolongs cell survival in Duchenne muscular dystrophy cardiomyocytes derived from human iPSCs</title><author>Eguchi, Asuka ; Gonzalez, Adriana Fernanda G S ; Torres-Bigio, Sofía I ; Koleckar, Kassie ; Birnbaum, Foster ; Zhang, Joe Z ; Wang, Vicky Y ; Wu, Joseph C ; Artandi, Steven E ; Blau, Helen M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-20fa3bb8cdfa7be6486fd1db780a46a4cb4d0796dd5f6d044930cb2cb4941bdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bioengineering</topic><topic>Biological Sciences</topic><topic>Calcium imaging</topic><topic>Cardiomyocytes</topic><topic>Cardiomyopathy</topic><topic>Cardiomyopathy, Dilated - genetics</topic><topic>Cell activation</topic><topic>Cell death</topic><topic>Cell morphology</topic><topic>Cell size</topic><topic>Cell Survival</topic><topic>Congestive heart failure</topic><topic>Cytology</topic><topic>Density</topic><topic>Dilated cardiomyopathy</topic><topic>DNA damage</topic><topic>Duchenne's muscular dystrophy</topic><topic>Dystrophin</topic><topic>Dystrophin - genetics</topic><topic>Dystrophy</topic><topic>Fibrosis</topic><topic>Heart Failure - metabolism</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Mechanical properties</topic><topic>Mortality</topic><topic>Muscles</topic><topic>Muscular dystrophy</topic><topic>Muscular Dystrophy, Duchenne - metabolism</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Pluripotency</topic><topic>Stem cells</topic><topic>Telomere - genetics</topic><topic>Telomere - metabolism</topic><topic>Telomere-binding protein</topic><topic>TRF2 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eguchi, Asuka</creatorcontrib><creatorcontrib>Gonzalez, Adriana Fernanda G S</creatorcontrib><creatorcontrib>Torres-Bigio, Sofía I</creatorcontrib><creatorcontrib>Koleckar, Kassie</creatorcontrib><creatorcontrib>Birnbaum, Foster</creatorcontrib><creatorcontrib>Zhang, Joe Z</creatorcontrib><creatorcontrib>Wang, Vicky Y</creatorcontrib><creatorcontrib>Wu, Joseph C</creatorcontrib><creatorcontrib>Artandi, Steven E</creatorcontrib><creatorcontrib>Blau, Helen M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eguchi, Asuka</au><au>Gonzalez, Adriana Fernanda G S</au><au>Torres-Bigio, Sofía I</au><au>Koleckar, Kassie</au><au>Birnbaum, Foster</au><au>Zhang, Joe Z</au><au>Wang, Vicky Y</au><au>Wu, Joseph C</au><au>Artandi, Steven E</au><au>Blau, Helen M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TRF2 rescues telomere attrition and prolongs cell survival in Duchenne muscular dystrophy cardiomyocytes derived from human iPSCs</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-02-07</date><risdate>2023</risdate><volume>120</volume><issue>6</issue><spage>e2209967120</spage><pages>e2209967120-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by the lack of dystrophin. Heart failure, driven by cardiomyocyte death, fibrosis, and the development of dilated cardiomyopathy, is the leading cause of death in DMD patients. Current treatments decrease the mechanical load on the heart but do not address the root cause of dilated cardiomyopathy: cardiomyocyte death. Previously, we showed that telomere shortening is a hallmark of DMD cardiomyocytes. Here, we test whether prevention of telomere attrition is possible in cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPSC-CMs) and if preventing telomere shortening impacts cardiomyocyte function. We observe reduced cell size, nuclear size, and sarcomere density in DMD iPSC-CMs compared with healthy isogenic controls. We find that expression of just one telomere-binding protein, telomeric repeat-binding factor 2 (TRF2), a core component of the shelterin complex, prevents telomere attrition and rescues deficiencies in cell size as well as sarcomere density. We employ a bioengineered platform to micropattern cardiomyocytes for calcium imaging and perform Southern blots of telomere restriction fragments, the gold standard for telomere length assessments. Importantly, preservation of telomere lengths in DMD cardiomyocytes improves their viability. These data provide evidence that preventing telomere attrition ameliorates deficits in cell morphology, activation of the DNA damage response, and premature cell death, suggesting that TRF2 is a key player in DMD-associated cardiac failure.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36719921</pmid><doi>10.1073/pnas.2209967120</doi><orcidid>https://orcid.org/0000-0002-6068-8041</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2023-02, Vol.120 (6), p.e2209967120 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9963063 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Bioengineering Biological Sciences Calcium imaging Cardiomyocytes Cardiomyopathy Cardiomyopathy, Dilated - genetics Cell activation Cell death Cell morphology Cell size Cell Survival Congestive heart failure Cytology Density Dilated cardiomyopathy DNA damage Duchenne's muscular dystrophy Dystrophin Dystrophin - genetics Dystrophy Fibrosis Heart Failure - metabolism Humans Induced Pluripotent Stem Cells - metabolism Mechanical properties Mortality Muscles Muscular dystrophy Muscular Dystrophy, Duchenne - metabolism Myocytes, Cardiac - metabolism Pluripotency Stem cells Telomere - genetics Telomere - metabolism Telomere-binding protein TRF2 protein |
title | TRF2 rescues telomere attrition and prolongs cell survival in Duchenne muscular dystrophy cardiomyocytes derived from human iPSCs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TRF2%20rescues%20telomere%20attrition%20and%20prolongs%20cell%20survival%20in%20Duchenne%20muscular%20dystrophy%20cardiomyocytes%20derived%20from%C2%A0human%20iPSCs&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Eguchi,%20Asuka&rft.date=2023-02-07&rft.volume=120&rft.issue=6&rft.spage=e2209967120&rft.pages=e2209967120-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2209967120&rft_dat=%3Cproquest_pubme%3E2771333353%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774941949&rft_id=info:pmid/36719921&rfr_iscdi=true |