TRF2 rescues telomere attrition and prolongs cell survival in Duchenne muscular dystrophy cardiomyocytes derived from human iPSCs

Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by the lack of dystrophin. Heart failure, driven by cardiomyocyte death, fibrosis, and the development of dilated cardiomyopathy, is the leading cause of death in DMD patients. Current treatments decrease the mechanical load...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2023-02, Vol.120 (6), p.e2209967120
Hauptverfasser: Eguchi, Asuka, Gonzalez, Adriana Fernanda G S, Torres-Bigio, Sofía I, Koleckar, Kassie, Birnbaum, Foster, Zhang, Joe Z, Wang, Vicky Y, Wu, Joseph C, Artandi, Steven E, Blau, Helen M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e2209967120
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Eguchi, Asuka
Gonzalez, Adriana Fernanda G S
Torres-Bigio, Sofía I
Koleckar, Kassie
Birnbaum, Foster
Zhang, Joe Z
Wang, Vicky Y
Wu, Joseph C
Artandi, Steven E
Blau, Helen M
description Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by the lack of dystrophin. Heart failure, driven by cardiomyocyte death, fibrosis, and the development of dilated cardiomyopathy, is the leading cause of death in DMD patients. Current treatments decrease the mechanical load on the heart but do not address the root cause of dilated cardiomyopathy: cardiomyocyte death. Previously, we showed that telomere shortening is a hallmark of DMD cardiomyocytes. Here, we test whether prevention of telomere attrition is possible in cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPSC-CMs) and if preventing telomere shortening impacts cardiomyocyte function. We observe reduced cell size, nuclear size, and sarcomere density in DMD iPSC-CMs compared with healthy isogenic controls. We find that expression of just one telomere-binding protein, telomeric repeat-binding factor 2 (TRF2), a core component of the shelterin complex, prevents telomere attrition and rescues deficiencies in cell size as well as sarcomere density. We employ a bioengineered platform to micropattern cardiomyocytes for calcium imaging and perform Southern blots of telomere restriction fragments, the gold standard for telomere length assessments. Importantly, preservation of telomere lengths in DMD cardiomyocytes improves their viability. These data provide evidence that preventing telomere attrition ameliorates deficits in cell morphology, activation of the DNA damage response, and premature cell death, suggesting that TRF2 is a key player in DMD-associated cardiac failure.
doi_str_mv 10.1073/pnas.2209967120
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9963063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771333353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-20fa3bb8cdfa7be6486fd1db780a46a4cb4d0796dd5f6d044930cb2cb4941bdb3</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhS0EosPAmh2yxIZN2uvHJPEGCU0pIFUCQVlbfqXjKrGDnYyULb-E38Ivw1FLeXhjyffz0bnnIPScwCmBhp2NQeVTSkGIuiEUHqANAUGqmgt4iDYAtKlaTvkJepLzDQCIXQuP0QkrtBCUbND3q88XFCeXzewynlwfB5ccVtOU_ORjwCpYPKbYx3CdsXF9j_Ocjv6oeuwDPp_NwYXg8DAXhV4lbJc8pTgeFmxUsj4OSzTLVLStS_7oLO5SHH7-OMyDCth_-rLPT9GjTvXZPbu7t-jrxdur_fvq8uO7D_s3l5XhlEwVhU4xrVtjO9VoV_O27iyxumlB8Vpxo7mFRtTW7rraAueCgdG0PAtOtNVsi17f6o6zHpw1LkxJ9XJMflBpkVF5-e8k-IO8jkdZwmVQsyLw6k4gxW8lrkkOPq-RqODinCVtGsLK2a3oy__QmzinUNZbqdWRKP626OyWMinmnFx3b4aAXPuVa7_yT7_lx4u_d7jnfxfKfgGnP6bj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774941949</pqid></control><display><type>article</type><title>TRF2 rescues telomere attrition and prolongs cell survival in Duchenne muscular dystrophy cardiomyocytes derived from human iPSCs</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Eguchi, Asuka ; Gonzalez, Adriana Fernanda G S ; Torres-Bigio, Sofía I ; Koleckar, Kassie ; Birnbaum, Foster ; Zhang, Joe Z ; Wang, Vicky Y ; Wu, Joseph C ; Artandi, Steven E ; Blau, Helen M</creator><creatorcontrib>Eguchi, Asuka ; Gonzalez, Adriana Fernanda G S ; Torres-Bigio, Sofía I ; Koleckar, Kassie ; Birnbaum, Foster ; Zhang, Joe Z ; Wang, Vicky Y ; Wu, Joseph C ; Artandi, Steven E ; Blau, Helen M</creatorcontrib><description>Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by the lack of dystrophin. Heart failure, driven by cardiomyocyte death, fibrosis, and the development of dilated cardiomyopathy, is the leading cause of death in DMD patients. Current treatments decrease the mechanical load on the heart but do not address the root cause of dilated cardiomyopathy: cardiomyocyte death. Previously, we showed that telomere shortening is a hallmark of DMD cardiomyocytes. Here, we test whether prevention of telomere attrition is possible in cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPSC-CMs) and if preventing telomere shortening impacts cardiomyocyte function. We observe reduced cell size, nuclear size, and sarcomere density in DMD iPSC-CMs compared with healthy isogenic controls. We find that expression of just one telomere-binding protein, telomeric repeat-binding factor 2 (TRF2), a core component of the shelterin complex, prevents telomere attrition and rescues deficiencies in cell size as well as sarcomere density. We employ a bioengineered platform to micropattern cardiomyocytes for calcium imaging and perform Southern blots of telomere restriction fragments, the gold standard for telomere length assessments. Importantly, preservation of telomere lengths in DMD cardiomyocytes improves their viability. These data provide evidence that preventing telomere attrition ameliorates deficits in cell morphology, activation of the DNA damage response, and premature cell death, suggesting that TRF2 is a key player in DMD-associated cardiac failure.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2209967120</identifier><identifier>PMID: 36719921</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bioengineering ; Biological Sciences ; Calcium imaging ; Cardiomyocytes ; Cardiomyopathy ; Cardiomyopathy, Dilated - genetics ; Cell activation ; Cell death ; Cell morphology ; Cell size ; Cell Survival ; Congestive heart failure ; Cytology ; Density ; Dilated cardiomyopathy ; DNA damage ; Duchenne's muscular dystrophy ; Dystrophin ; Dystrophin - genetics ; Dystrophy ; Fibrosis ; Heart Failure - metabolism ; Humans ; Induced Pluripotent Stem Cells - metabolism ; Mechanical properties ; Mortality ; Muscles ; Muscular dystrophy ; Muscular Dystrophy, Duchenne - metabolism ; Myocytes, Cardiac - metabolism ; Pluripotency ; Stem cells ; Telomere - genetics ; Telomere - metabolism ; Telomere-binding protein ; TRF2 protein</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-02, Vol.120 (6), p.e2209967120</ispartof><rights>Copyright National Academy of Sciences Feb 7, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-20fa3bb8cdfa7be6486fd1db780a46a4cb4d0796dd5f6d044930cb2cb4941bdb3</citedby><cites>FETCH-LOGICAL-c421t-20fa3bb8cdfa7be6486fd1db780a46a4cb4d0796dd5f6d044930cb2cb4941bdb3</cites><orcidid>0000-0002-6068-8041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963063/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963063/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36719921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eguchi, Asuka</creatorcontrib><creatorcontrib>Gonzalez, Adriana Fernanda G S</creatorcontrib><creatorcontrib>Torres-Bigio, Sofía I</creatorcontrib><creatorcontrib>Koleckar, Kassie</creatorcontrib><creatorcontrib>Birnbaum, Foster</creatorcontrib><creatorcontrib>Zhang, Joe Z</creatorcontrib><creatorcontrib>Wang, Vicky Y</creatorcontrib><creatorcontrib>Wu, Joseph C</creatorcontrib><creatorcontrib>Artandi, Steven E</creatorcontrib><creatorcontrib>Blau, Helen M</creatorcontrib><title>TRF2 rescues telomere attrition and prolongs cell survival in Duchenne muscular dystrophy cardiomyocytes derived from human iPSCs</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by the lack of dystrophin. Heart failure, driven by cardiomyocyte death, fibrosis, and the development of dilated cardiomyopathy, is the leading cause of death in DMD patients. Current treatments decrease the mechanical load on the heart but do not address the root cause of dilated cardiomyopathy: cardiomyocyte death. Previously, we showed that telomere shortening is a hallmark of DMD cardiomyocytes. Here, we test whether prevention of telomere attrition is possible in cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPSC-CMs) and if preventing telomere shortening impacts cardiomyocyte function. We observe reduced cell size, nuclear size, and sarcomere density in DMD iPSC-CMs compared with healthy isogenic controls. We find that expression of just one telomere-binding protein, telomeric repeat-binding factor 2 (TRF2), a core component of the shelterin complex, prevents telomere attrition and rescues deficiencies in cell size as well as sarcomere density. We employ a bioengineered platform to micropattern cardiomyocytes for calcium imaging and perform Southern blots of telomere restriction fragments, the gold standard for telomere length assessments. Importantly, preservation of telomere lengths in DMD cardiomyocytes improves their viability. These data provide evidence that preventing telomere attrition ameliorates deficits in cell morphology, activation of the DNA damage response, and premature cell death, suggesting that TRF2 is a key player in DMD-associated cardiac failure.</description><subject>Bioengineering</subject><subject>Biological Sciences</subject><subject>Calcium imaging</subject><subject>Cardiomyocytes</subject><subject>Cardiomyopathy</subject><subject>Cardiomyopathy, Dilated - genetics</subject><subject>Cell activation</subject><subject>Cell death</subject><subject>Cell morphology</subject><subject>Cell size</subject><subject>Cell Survival</subject><subject>Congestive heart failure</subject><subject>Cytology</subject><subject>Density</subject><subject>Dilated cardiomyopathy</subject><subject>DNA damage</subject><subject>Duchenne's muscular dystrophy</subject><subject>Dystrophin</subject><subject>Dystrophin - genetics</subject><subject>Dystrophy</subject><subject>Fibrosis</subject><subject>Heart Failure - metabolism</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Mechanical properties</subject><subject>Mortality</subject><subject>Muscles</subject><subject>Muscular dystrophy</subject><subject>Muscular Dystrophy, Duchenne - metabolism</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Pluripotency</subject><subject>Stem cells</subject><subject>Telomere - genetics</subject><subject>Telomere - metabolism</subject><subject>Telomere-binding protein</subject><subject>TRF2 protein</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtv1DAUhS0EosPAmh2yxIZN2uvHJPEGCU0pIFUCQVlbfqXjKrGDnYyULb-E38Ivw1FLeXhjyffz0bnnIPScwCmBhp2NQeVTSkGIuiEUHqANAUGqmgt4iDYAtKlaTvkJepLzDQCIXQuP0QkrtBCUbND3q88XFCeXzewynlwfB5ccVtOU_ORjwCpYPKbYx3CdsXF9j_Ocjv6oeuwDPp_NwYXg8DAXhV4lbJc8pTgeFmxUsj4OSzTLVLStS_7oLO5SHH7-OMyDCth_-rLPT9GjTvXZPbu7t-jrxdur_fvq8uO7D_s3l5XhlEwVhU4xrVtjO9VoV_O27iyxumlB8Vpxo7mFRtTW7rraAueCgdG0PAtOtNVsi17f6o6zHpw1LkxJ9XJMflBpkVF5-e8k-IO8jkdZwmVQsyLw6k4gxW8lrkkOPq-RqODinCVtGsLK2a3oy__QmzinUNZbqdWRKP626OyWMinmnFx3b4aAXPuVa7_yT7_lx4u_d7jnfxfKfgGnP6bj</recordid><startdate>20230207</startdate><enddate>20230207</enddate><creator>Eguchi, Asuka</creator><creator>Gonzalez, Adriana Fernanda G S</creator><creator>Torres-Bigio, Sofía I</creator><creator>Koleckar, Kassie</creator><creator>Birnbaum, Foster</creator><creator>Zhang, Joe Z</creator><creator>Wang, Vicky Y</creator><creator>Wu, Joseph C</creator><creator>Artandi, Steven E</creator><creator>Blau, Helen M</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6068-8041</orcidid></search><sort><creationdate>20230207</creationdate><title>TRF2 rescues telomere attrition and prolongs cell survival in Duchenne muscular dystrophy cardiomyocytes derived from human iPSCs</title><author>Eguchi, Asuka ; Gonzalez, Adriana Fernanda G S ; Torres-Bigio, Sofía I ; Koleckar, Kassie ; Birnbaum, Foster ; Zhang, Joe Z ; Wang, Vicky Y ; Wu, Joseph C ; Artandi, Steven E ; Blau, Helen M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-20fa3bb8cdfa7be6486fd1db780a46a4cb4d0796dd5f6d044930cb2cb4941bdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bioengineering</topic><topic>Biological Sciences</topic><topic>Calcium imaging</topic><topic>Cardiomyocytes</topic><topic>Cardiomyopathy</topic><topic>Cardiomyopathy, Dilated - genetics</topic><topic>Cell activation</topic><topic>Cell death</topic><topic>Cell morphology</topic><topic>Cell size</topic><topic>Cell Survival</topic><topic>Congestive heart failure</topic><topic>Cytology</topic><topic>Density</topic><topic>Dilated cardiomyopathy</topic><topic>DNA damage</topic><topic>Duchenne's muscular dystrophy</topic><topic>Dystrophin</topic><topic>Dystrophin - genetics</topic><topic>Dystrophy</topic><topic>Fibrosis</topic><topic>Heart Failure - metabolism</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Mechanical properties</topic><topic>Mortality</topic><topic>Muscles</topic><topic>Muscular dystrophy</topic><topic>Muscular Dystrophy, Duchenne - metabolism</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Pluripotency</topic><topic>Stem cells</topic><topic>Telomere - genetics</topic><topic>Telomere - metabolism</topic><topic>Telomere-binding protein</topic><topic>TRF2 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eguchi, Asuka</creatorcontrib><creatorcontrib>Gonzalez, Adriana Fernanda G S</creatorcontrib><creatorcontrib>Torres-Bigio, Sofía I</creatorcontrib><creatorcontrib>Koleckar, Kassie</creatorcontrib><creatorcontrib>Birnbaum, Foster</creatorcontrib><creatorcontrib>Zhang, Joe Z</creatorcontrib><creatorcontrib>Wang, Vicky Y</creatorcontrib><creatorcontrib>Wu, Joseph C</creatorcontrib><creatorcontrib>Artandi, Steven E</creatorcontrib><creatorcontrib>Blau, Helen M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eguchi, Asuka</au><au>Gonzalez, Adriana Fernanda G S</au><au>Torres-Bigio, Sofía I</au><au>Koleckar, Kassie</au><au>Birnbaum, Foster</au><au>Zhang, Joe Z</au><au>Wang, Vicky Y</au><au>Wu, Joseph C</au><au>Artandi, Steven E</au><au>Blau, Helen M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TRF2 rescues telomere attrition and prolongs cell survival in Duchenne muscular dystrophy cardiomyocytes derived from human iPSCs</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-02-07</date><risdate>2023</risdate><volume>120</volume><issue>6</issue><spage>e2209967120</spage><pages>e2209967120-</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by the lack of dystrophin. Heart failure, driven by cardiomyocyte death, fibrosis, and the development of dilated cardiomyopathy, is the leading cause of death in DMD patients. Current treatments decrease the mechanical load on the heart but do not address the root cause of dilated cardiomyopathy: cardiomyocyte death. Previously, we showed that telomere shortening is a hallmark of DMD cardiomyocytes. Here, we test whether prevention of telomere attrition is possible in cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPSC-CMs) and if preventing telomere shortening impacts cardiomyocyte function. We observe reduced cell size, nuclear size, and sarcomere density in DMD iPSC-CMs compared with healthy isogenic controls. We find that expression of just one telomere-binding protein, telomeric repeat-binding factor 2 (TRF2), a core component of the shelterin complex, prevents telomere attrition and rescues deficiencies in cell size as well as sarcomere density. We employ a bioengineered platform to micropattern cardiomyocytes for calcium imaging and perform Southern blots of telomere restriction fragments, the gold standard for telomere length assessments. Importantly, preservation of telomere lengths in DMD cardiomyocytes improves their viability. These data provide evidence that preventing telomere attrition ameliorates deficits in cell morphology, activation of the DNA damage response, and premature cell death, suggesting that TRF2 is a key player in DMD-associated cardiac failure.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36719921</pmid><doi>10.1073/pnas.2209967120</doi><orcidid>https://orcid.org/0000-0002-6068-8041</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-02, Vol.120 (6), p.e2209967120
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9963063
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Bioengineering
Biological Sciences
Calcium imaging
Cardiomyocytes
Cardiomyopathy
Cardiomyopathy, Dilated - genetics
Cell activation
Cell death
Cell morphology
Cell size
Cell Survival
Congestive heart failure
Cytology
Density
Dilated cardiomyopathy
DNA damage
Duchenne's muscular dystrophy
Dystrophin
Dystrophin - genetics
Dystrophy
Fibrosis
Heart Failure - metabolism
Humans
Induced Pluripotent Stem Cells - metabolism
Mechanical properties
Mortality
Muscles
Muscular dystrophy
Muscular Dystrophy, Duchenne - metabolism
Myocytes, Cardiac - metabolism
Pluripotency
Stem cells
Telomere - genetics
Telomere - metabolism
Telomere-binding protein
TRF2 protein
title TRF2 rescues telomere attrition and prolongs cell survival in Duchenne muscular dystrophy cardiomyocytes derived from human iPSCs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TRF2%20rescues%20telomere%20attrition%20and%20prolongs%20cell%20survival%20in%20Duchenne%20muscular%20dystrophy%20cardiomyocytes%20derived%20from%C2%A0human%20iPSCs&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Eguchi,%20Asuka&rft.date=2023-02-07&rft.volume=120&rft.issue=6&rft.spage=e2209967120&rft.pages=e2209967120-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2209967120&rft_dat=%3Cproquest_pubme%3E2771333353%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774941949&rft_id=info:pmid/36719921&rfr_iscdi=true