Neutron-Absorption Properties of B/Cu Composites

Copper has high electrical and thermal conductivity, which is frequently employed in structural and functional materials. In this research, powder metallurgy was used to incorporate boron nanosheets into metal matrix composites to create boron dispersion-enhanced copper matrix composites. The neutro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-02, Vol.16 (4), p.1443
Hauptverfasser: Wang, Haoran, Zhao, Shuo, Han, Junqing, Wu, Yuying, Liu, Xiangfa, Wei, Zuoshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 1443
container_title Materials
container_volume 16
creator Wang, Haoran
Zhao, Shuo
Han, Junqing
Wu, Yuying
Liu, Xiangfa
Wei, Zuoshan
description Copper has high electrical and thermal conductivity, which is frequently employed in structural and functional materials. In this research, powder metallurgy was used to incorporate boron nanosheets into metal matrix composites to create boron dispersion-enhanced copper matrix composites. The neutron-absorption characteristics of composite materials were investigated, as well as the link between neutron-absorption cross-section and neutron energy. The results told us that the morphology of the second phase on the particle surface is closely related to the size of Cu-B particles, copper and boron correspond atomically to each other on the interface without dislocation or lattice distortion, forming a completely coherent interface, and that the neutron absorption cross-section decreases exponentially as neutron energy increases. In low-energy neutrons with energies less than 0.1 eV, the increase of boron content and B abundance in Cu-B alloy will enhance the neutron-absorption capacity of the alloy. Boron dispersion-strengthened copper matrix composites have good neutron-absorption capacity, and the microstructure and size of boron do not affect the neutron-absorption performance of composites with the same content of boron. The hardness of the B-dispersion-strengthened Cu matrix composite obtained by nanoindentation test is about 3.04 GPa. Copper matrix composites with boron dispersion reinforcement exhibit high hardness and neutron-absorption characteristics.
doi_str_mv 10.3390/ma16041443
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9961145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743159214</galeid><sourcerecordid>A743159214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-c7a64d81a4b0f352e24ed46087a0c8340db854cc6c5f5092d8335fe817aee9653</originalsourceid><addsrcrecordid>eNpdkV1LBCEUhiWKNrZu-gGx0E0E0-qoo94E29IXRHVR1-I6Z8plZpx0Jujf57Lbp14ox-e8npcXoUOCzyhVeNoYUmBGGKNbaI8oVWREMbb96z5CBzEucVqUEpmrXTSihaQCC7qH8D0MffBtNltEH7re-XbyGHwHoXcQJ76aXEznw2Tum85H10PcRzuVqSMcbM4xer66fJrfZHcP17fz2V1mGeN9ZoUpWCmJYQtcUZ5DzqBkBZbCYCspw-VCcmZtYXnFscpLSSmvQBJhAFTB6Ridr3W7YdFAaaHtg6l1F1xjwof2xum_L6171S_-XSfbhLCVwMlGIPi3AWKvGxct1LVpwQ9R50JiLEROVujxP3Tph9Ame4kSiitMlEjU2Zp6MTVo11Y-_WvTLqFx1rdQuVSfCUYJVzlhqeF03WCDjzFA9T09wXoVnv4JL8FHv_1-o19R0U-rH5KW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779590197</pqid></control><display><type>article</type><title>Neutron-Absorption Properties of B/Cu Composites</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Haoran ; Zhao, Shuo ; Han, Junqing ; Wu, Yuying ; Liu, Xiangfa ; Wei, Zuoshan</creator><creatorcontrib>Wang, Haoran ; Zhao, Shuo ; Han, Junqing ; Wu, Yuying ; Liu, Xiangfa ; Wei, Zuoshan</creatorcontrib><description>Copper has high electrical and thermal conductivity, which is frequently employed in structural and functional materials. In this research, powder metallurgy was used to incorporate boron nanosheets into metal matrix composites to create boron dispersion-enhanced copper matrix composites. The neutron-absorption characteristics of composite materials were investigated, as well as the link between neutron-absorption cross-section and neutron energy. The results told us that the morphology of the second phase on the particle surface is closely related to the size of Cu-B particles, copper and boron correspond atomically to each other on the interface without dislocation or lattice distortion, forming a completely coherent interface, and that the neutron absorption cross-section decreases exponentially as neutron energy increases. In low-energy neutrons with energies less than 0.1 eV, the increase of boron content and B abundance in Cu-B alloy will enhance the neutron-absorption capacity of the alloy. Boron dispersion-strengthened copper matrix composites have good neutron-absorption capacity, and the microstructure and size of boron do not affect the neutron-absorption performance of composites with the same content of boron. The hardness of the B-dispersion-strengthened Cu matrix composite obtained by nanoindentation test is about 3.04 GPa. Copper matrix composites with boron dispersion reinforcement exhibit high hardness and neutron-absorption characteristics.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16041443</identifier><identifier>PMID: 36837073</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Absorption cross sections ; Alloys ; Analysis ; Atoms &amp; subatomic particles ; Boron ; Charged particles ; Composite materials ; Copper ; Dispersion hardening alloys ; Electrical resistivity ; Experiments ; Functional materials ; Graphite ; Hardness ; Metal matrix composites ; Monte Carlo method ; Nanoindentation ; Neutron absorption ; Neutrons ; Nuclear energy ; Polyethylene ; Powder metallurgy ; Radiation ; Thermal conductivity</subject><ispartof>Materials, 2023-02, Vol.16 (4), p.1443</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-c7a64d81a4b0f352e24ed46087a0c8340db854cc6c5f5092d8335fe817aee9653</citedby><cites>FETCH-LOGICAL-c445t-c7a64d81a4b0f352e24ed46087a0c8340db854cc6c5f5092d8335fe817aee9653</cites><orcidid>0000-0002-0643-8543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961145/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961145/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36837073$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Haoran</creatorcontrib><creatorcontrib>Zhao, Shuo</creatorcontrib><creatorcontrib>Han, Junqing</creatorcontrib><creatorcontrib>Wu, Yuying</creatorcontrib><creatorcontrib>Liu, Xiangfa</creatorcontrib><creatorcontrib>Wei, Zuoshan</creatorcontrib><title>Neutron-Absorption Properties of B/Cu Composites</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Copper has high electrical and thermal conductivity, which is frequently employed in structural and functional materials. In this research, powder metallurgy was used to incorporate boron nanosheets into metal matrix composites to create boron dispersion-enhanced copper matrix composites. The neutron-absorption characteristics of composite materials were investigated, as well as the link between neutron-absorption cross-section and neutron energy. The results told us that the morphology of the second phase on the particle surface is closely related to the size of Cu-B particles, copper and boron correspond atomically to each other on the interface without dislocation or lattice distortion, forming a completely coherent interface, and that the neutron absorption cross-section decreases exponentially as neutron energy increases. In low-energy neutrons with energies less than 0.1 eV, the increase of boron content and B abundance in Cu-B alloy will enhance the neutron-absorption capacity of the alloy. Boron dispersion-strengthened copper matrix composites have good neutron-absorption capacity, and the microstructure and size of boron do not affect the neutron-absorption performance of composites with the same content of boron. The hardness of the B-dispersion-strengthened Cu matrix composite obtained by nanoindentation test is about 3.04 GPa. Copper matrix composites with boron dispersion reinforcement exhibit high hardness and neutron-absorption characteristics.</description><subject>Absorption cross sections</subject><subject>Alloys</subject><subject>Analysis</subject><subject>Atoms &amp; subatomic particles</subject><subject>Boron</subject><subject>Charged particles</subject><subject>Composite materials</subject><subject>Copper</subject><subject>Dispersion hardening alloys</subject><subject>Electrical resistivity</subject><subject>Experiments</subject><subject>Functional materials</subject><subject>Graphite</subject><subject>Hardness</subject><subject>Metal matrix composites</subject><subject>Monte Carlo method</subject><subject>Nanoindentation</subject><subject>Neutron absorption</subject><subject>Neutrons</subject><subject>Nuclear energy</subject><subject>Polyethylene</subject><subject>Powder metallurgy</subject><subject>Radiation</subject><subject>Thermal conductivity</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV1LBCEUhiWKNrZu-gGx0E0E0-qoo94E29IXRHVR1-I6Z8plZpx0Jujf57Lbp14ox-e8npcXoUOCzyhVeNoYUmBGGKNbaI8oVWREMbb96z5CBzEucVqUEpmrXTSihaQCC7qH8D0MffBtNltEH7re-XbyGHwHoXcQJ76aXEznw2Tum85H10PcRzuVqSMcbM4xer66fJrfZHcP17fz2V1mGeN9ZoUpWCmJYQtcUZ5DzqBkBZbCYCspw-VCcmZtYXnFscpLSSmvQBJhAFTB6Ridr3W7YdFAaaHtg6l1F1xjwof2xum_L6171S_-XSfbhLCVwMlGIPi3AWKvGxct1LVpwQ9R50JiLEROVujxP3Tph9Ame4kSiitMlEjU2Zp6MTVo11Y-_WvTLqFx1rdQuVSfCUYJVzlhqeF03WCDjzFA9T09wXoVnv4JL8FHv_1-o19R0U-rH5KW</recordid><startdate>20230208</startdate><enddate>20230208</enddate><creator>Wang, Haoran</creator><creator>Zhao, Shuo</creator><creator>Han, Junqing</creator><creator>Wu, Yuying</creator><creator>Liu, Xiangfa</creator><creator>Wei, Zuoshan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0643-8543</orcidid></search><sort><creationdate>20230208</creationdate><title>Neutron-Absorption Properties of B/Cu Composites</title><author>Wang, Haoran ; Zhao, Shuo ; Han, Junqing ; Wu, Yuying ; Liu, Xiangfa ; Wei, Zuoshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-c7a64d81a4b0f352e24ed46087a0c8340db854cc6c5f5092d8335fe817aee9653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption cross sections</topic><topic>Alloys</topic><topic>Analysis</topic><topic>Atoms &amp; subatomic particles</topic><topic>Boron</topic><topic>Charged particles</topic><topic>Composite materials</topic><topic>Copper</topic><topic>Dispersion hardening alloys</topic><topic>Electrical resistivity</topic><topic>Experiments</topic><topic>Functional materials</topic><topic>Graphite</topic><topic>Hardness</topic><topic>Metal matrix composites</topic><topic>Monte Carlo method</topic><topic>Nanoindentation</topic><topic>Neutron absorption</topic><topic>Neutrons</topic><topic>Nuclear energy</topic><topic>Polyethylene</topic><topic>Powder metallurgy</topic><topic>Radiation</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haoran</creatorcontrib><creatorcontrib>Zhao, Shuo</creatorcontrib><creatorcontrib>Han, Junqing</creatorcontrib><creatorcontrib>Wu, Yuying</creatorcontrib><creatorcontrib>Liu, Xiangfa</creatorcontrib><creatorcontrib>Wei, Zuoshan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haoran</au><au>Zhao, Shuo</au><au>Han, Junqing</au><au>Wu, Yuying</au><au>Liu, Xiangfa</au><au>Wei, Zuoshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutron-Absorption Properties of B/Cu Composites</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-02-08</date><risdate>2023</risdate><volume>16</volume><issue>4</issue><spage>1443</spage><pages>1443-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Copper has high electrical and thermal conductivity, which is frequently employed in structural and functional materials. In this research, powder metallurgy was used to incorporate boron nanosheets into metal matrix composites to create boron dispersion-enhanced copper matrix composites. The neutron-absorption characteristics of composite materials were investigated, as well as the link between neutron-absorption cross-section and neutron energy. The results told us that the morphology of the second phase on the particle surface is closely related to the size of Cu-B particles, copper and boron correspond atomically to each other on the interface without dislocation or lattice distortion, forming a completely coherent interface, and that the neutron absorption cross-section decreases exponentially as neutron energy increases. In low-energy neutrons with energies less than 0.1 eV, the increase of boron content and B abundance in Cu-B alloy will enhance the neutron-absorption capacity of the alloy. Boron dispersion-strengthened copper matrix composites have good neutron-absorption capacity, and the microstructure and size of boron do not affect the neutron-absorption performance of composites with the same content of boron. The hardness of the B-dispersion-strengthened Cu matrix composite obtained by nanoindentation test is about 3.04 GPa. Copper matrix composites with boron dispersion reinforcement exhibit high hardness and neutron-absorption characteristics.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36837073</pmid><doi>10.3390/ma16041443</doi><orcidid>https://orcid.org/0000-0002-0643-8543</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-02, Vol.16 (4), p.1443
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9961145
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Absorption cross sections
Alloys
Analysis
Atoms & subatomic particles
Boron
Charged particles
Composite materials
Copper
Dispersion hardening alloys
Electrical resistivity
Experiments
Functional materials
Graphite
Hardness
Metal matrix composites
Monte Carlo method
Nanoindentation
Neutron absorption
Neutrons
Nuclear energy
Polyethylene
Powder metallurgy
Radiation
Thermal conductivity
title Neutron-Absorption Properties of B/Cu Composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T13%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutron-Absorption%20Properties%20of%20B/Cu%20Composites&rft.jtitle=Materials&rft.au=Wang,%20Haoran&rft.date=2023-02-08&rft.volume=16&rft.issue=4&rft.spage=1443&rft.pages=1443-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16041443&rft_dat=%3Cgale_pubme%3EA743159214%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779590197&rft_id=info:pmid/36837073&rft_galeid=A743159214&rfr_iscdi=true