Neutron-Absorption Properties of B/Cu Composites
Copper has high electrical and thermal conductivity, which is frequently employed in structural and functional materials. In this research, powder metallurgy was used to incorporate boron nanosheets into metal matrix composites to create boron dispersion-enhanced copper matrix composites. The neutro...
Gespeichert in:
Veröffentlicht in: | Materials 2023-02, Vol.16 (4), p.1443 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 1443 |
container_title | Materials |
container_volume | 16 |
creator | Wang, Haoran Zhao, Shuo Han, Junqing Wu, Yuying Liu, Xiangfa Wei, Zuoshan |
description | Copper has high electrical and thermal conductivity, which is frequently employed in structural and functional materials. In this research, powder metallurgy was used to incorporate boron nanosheets into metal matrix composites to create boron dispersion-enhanced copper matrix composites. The neutron-absorption characteristics of composite materials were investigated, as well as the link between neutron-absorption cross-section and neutron energy. The results told us that the morphology of the second phase on the particle surface is closely related to the size of Cu-B particles, copper and boron correspond atomically to each other on the interface without dislocation or lattice distortion, forming a completely coherent interface, and that the neutron absorption cross-section decreases exponentially as neutron energy increases. In low-energy neutrons with energies less than 0.1 eV, the increase of boron content and
B abundance in Cu-B alloy will enhance the neutron-absorption capacity of the alloy. Boron dispersion-strengthened copper matrix composites have good neutron-absorption capacity, and the microstructure and size of boron do not affect the neutron-absorption performance of composites with the same content of boron. The hardness of the B-dispersion-strengthened Cu matrix composite obtained by nanoindentation test is about 3.04 GPa. Copper matrix composites with boron dispersion reinforcement exhibit high hardness and neutron-absorption characteristics. |
doi_str_mv | 10.3390/ma16041443 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9961145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743159214</galeid><sourcerecordid>A743159214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-c7a64d81a4b0f352e24ed46087a0c8340db854cc6c5f5092d8335fe817aee9653</originalsourceid><addsrcrecordid>eNpdkV1LBCEUhiWKNrZu-gGx0E0E0-qoo94E29IXRHVR1-I6Z8plZpx0Jujf57Lbp14ox-e8npcXoUOCzyhVeNoYUmBGGKNbaI8oVWREMbb96z5CBzEucVqUEpmrXTSihaQCC7qH8D0MffBtNltEH7re-XbyGHwHoXcQJ76aXEznw2Tum85H10PcRzuVqSMcbM4xer66fJrfZHcP17fz2V1mGeN9ZoUpWCmJYQtcUZ5DzqBkBZbCYCspw-VCcmZtYXnFscpLSSmvQBJhAFTB6Ridr3W7YdFAaaHtg6l1F1xjwof2xum_L6171S_-XSfbhLCVwMlGIPi3AWKvGxct1LVpwQ9R50JiLEROVujxP3Tph9Ame4kSiitMlEjU2Zp6MTVo11Y-_WvTLqFx1rdQuVSfCUYJVzlhqeF03WCDjzFA9T09wXoVnv4JL8FHv_1-o19R0U-rH5KW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779590197</pqid></control><display><type>article</type><title>Neutron-Absorption Properties of B/Cu Composites</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Haoran ; Zhao, Shuo ; Han, Junqing ; Wu, Yuying ; Liu, Xiangfa ; Wei, Zuoshan</creator><creatorcontrib>Wang, Haoran ; Zhao, Shuo ; Han, Junqing ; Wu, Yuying ; Liu, Xiangfa ; Wei, Zuoshan</creatorcontrib><description>Copper has high electrical and thermal conductivity, which is frequently employed in structural and functional materials. In this research, powder metallurgy was used to incorporate boron nanosheets into metal matrix composites to create boron dispersion-enhanced copper matrix composites. The neutron-absorption characteristics of composite materials were investigated, as well as the link between neutron-absorption cross-section and neutron energy. The results told us that the morphology of the second phase on the particle surface is closely related to the size of Cu-B particles, copper and boron correspond atomically to each other on the interface without dislocation or lattice distortion, forming a completely coherent interface, and that the neutron absorption cross-section decreases exponentially as neutron energy increases. In low-energy neutrons with energies less than 0.1 eV, the increase of boron content and
B abundance in Cu-B alloy will enhance the neutron-absorption capacity of the alloy. Boron dispersion-strengthened copper matrix composites have good neutron-absorption capacity, and the microstructure and size of boron do not affect the neutron-absorption performance of composites with the same content of boron. The hardness of the B-dispersion-strengthened Cu matrix composite obtained by nanoindentation test is about 3.04 GPa. Copper matrix composites with boron dispersion reinforcement exhibit high hardness and neutron-absorption characteristics.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16041443</identifier><identifier>PMID: 36837073</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Absorption cross sections ; Alloys ; Analysis ; Atoms & subatomic particles ; Boron ; Charged particles ; Composite materials ; Copper ; Dispersion hardening alloys ; Electrical resistivity ; Experiments ; Functional materials ; Graphite ; Hardness ; Metal matrix composites ; Monte Carlo method ; Nanoindentation ; Neutron absorption ; Neutrons ; Nuclear energy ; Polyethylene ; Powder metallurgy ; Radiation ; Thermal conductivity</subject><ispartof>Materials, 2023-02, Vol.16 (4), p.1443</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-c7a64d81a4b0f352e24ed46087a0c8340db854cc6c5f5092d8335fe817aee9653</citedby><cites>FETCH-LOGICAL-c445t-c7a64d81a4b0f352e24ed46087a0c8340db854cc6c5f5092d8335fe817aee9653</cites><orcidid>0000-0002-0643-8543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961145/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961145/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36837073$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Haoran</creatorcontrib><creatorcontrib>Zhao, Shuo</creatorcontrib><creatorcontrib>Han, Junqing</creatorcontrib><creatorcontrib>Wu, Yuying</creatorcontrib><creatorcontrib>Liu, Xiangfa</creatorcontrib><creatorcontrib>Wei, Zuoshan</creatorcontrib><title>Neutron-Absorption Properties of B/Cu Composites</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Copper has high electrical and thermal conductivity, which is frequently employed in structural and functional materials. In this research, powder metallurgy was used to incorporate boron nanosheets into metal matrix composites to create boron dispersion-enhanced copper matrix composites. The neutron-absorption characteristics of composite materials were investigated, as well as the link between neutron-absorption cross-section and neutron energy. The results told us that the morphology of the second phase on the particle surface is closely related to the size of Cu-B particles, copper and boron correspond atomically to each other on the interface without dislocation or lattice distortion, forming a completely coherent interface, and that the neutron absorption cross-section decreases exponentially as neutron energy increases. In low-energy neutrons with energies less than 0.1 eV, the increase of boron content and
B abundance in Cu-B alloy will enhance the neutron-absorption capacity of the alloy. Boron dispersion-strengthened copper matrix composites have good neutron-absorption capacity, and the microstructure and size of boron do not affect the neutron-absorption performance of composites with the same content of boron. The hardness of the B-dispersion-strengthened Cu matrix composite obtained by nanoindentation test is about 3.04 GPa. Copper matrix composites with boron dispersion reinforcement exhibit high hardness and neutron-absorption characteristics.</description><subject>Absorption cross sections</subject><subject>Alloys</subject><subject>Analysis</subject><subject>Atoms & subatomic particles</subject><subject>Boron</subject><subject>Charged particles</subject><subject>Composite materials</subject><subject>Copper</subject><subject>Dispersion hardening alloys</subject><subject>Electrical resistivity</subject><subject>Experiments</subject><subject>Functional materials</subject><subject>Graphite</subject><subject>Hardness</subject><subject>Metal matrix composites</subject><subject>Monte Carlo method</subject><subject>Nanoindentation</subject><subject>Neutron absorption</subject><subject>Neutrons</subject><subject>Nuclear energy</subject><subject>Polyethylene</subject><subject>Powder metallurgy</subject><subject>Radiation</subject><subject>Thermal conductivity</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkV1LBCEUhiWKNrZu-gGx0E0E0-qoo94E29IXRHVR1-I6Z8plZpx0Jujf57Lbp14ox-e8npcXoUOCzyhVeNoYUmBGGKNbaI8oVWREMbb96z5CBzEucVqUEpmrXTSihaQCC7qH8D0MffBtNltEH7re-XbyGHwHoXcQJ76aXEznw2Tum85H10PcRzuVqSMcbM4xer66fJrfZHcP17fz2V1mGeN9ZoUpWCmJYQtcUZ5DzqBkBZbCYCspw-VCcmZtYXnFscpLSSmvQBJhAFTB6Ridr3W7YdFAaaHtg6l1F1xjwof2xum_L6171S_-XSfbhLCVwMlGIPi3AWKvGxct1LVpwQ9R50JiLEROVujxP3Tph9Ame4kSiitMlEjU2Zp6MTVo11Y-_WvTLqFx1rdQuVSfCUYJVzlhqeF03WCDjzFA9T09wXoVnv4JL8FHv_1-o19R0U-rH5KW</recordid><startdate>20230208</startdate><enddate>20230208</enddate><creator>Wang, Haoran</creator><creator>Zhao, Shuo</creator><creator>Han, Junqing</creator><creator>Wu, Yuying</creator><creator>Liu, Xiangfa</creator><creator>Wei, Zuoshan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0643-8543</orcidid></search><sort><creationdate>20230208</creationdate><title>Neutron-Absorption Properties of B/Cu Composites</title><author>Wang, Haoran ; Zhao, Shuo ; Han, Junqing ; Wu, Yuying ; Liu, Xiangfa ; Wei, Zuoshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-c7a64d81a4b0f352e24ed46087a0c8340db854cc6c5f5092d8335fe817aee9653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption cross sections</topic><topic>Alloys</topic><topic>Analysis</topic><topic>Atoms & subatomic particles</topic><topic>Boron</topic><topic>Charged particles</topic><topic>Composite materials</topic><topic>Copper</topic><topic>Dispersion hardening alloys</topic><topic>Electrical resistivity</topic><topic>Experiments</topic><topic>Functional materials</topic><topic>Graphite</topic><topic>Hardness</topic><topic>Metal matrix composites</topic><topic>Monte Carlo method</topic><topic>Nanoindentation</topic><topic>Neutron absorption</topic><topic>Neutrons</topic><topic>Nuclear energy</topic><topic>Polyethylene</topic><topic>Powder metallurgy</topic><topic>Radiation</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haoran</creatorcontrib><creatorcontrib>Zhao, Shuo</creatorcontrib><creatorcontrib>Han, Junqing</creatorcontrib><creatorcontrib>Wu, Yuying</creatorcontrib><creatorcontrib>Liu, Xiangfa</creatorcontrib><creatorcontrib>Wei, Zuoshan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haoran</au><au>Zhao, Shuo</au><au>Han, Junqing</au><au>Wu, Yuying</au><au>Liu, Xiangfa</au><au>Wei, Zuoshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutron-Absorption Properties of B/Cu Composites</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-02-08</date><risdate>2023</risdate><volume>16</volume><issue>4</issue><spage>1443</spage><pages>1443-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Copper has high electrical and thermal conductivity, which is frequently employed in structural and functional materials. In this research, powder metallurgy was used to incorporate boron nanosheets into metal matrix composites to create boron dispersion-enhanced copper matrix composites. The neutron-absorption characteristics of composite materials were investigated, as well as the link between neutron-absorption cross-section and neutron energy. The results told us that the morphology of the second phase on the particle surface is closely related to the size of Cu-B particles, copper and boron correspond atomically to each other on the interface without dislocation or lattice distortion, forming a completely coherent interface, and that the neutron absorption cross-section decreases exponentially as neutron energy increases. In low-energy neutrons with energies less than 0.1 eV, the increase of boron content and
B abundance in Cu-B alloy will enhance the neutron-absorption capacity of the alloy. Boron dispersion-strengthened copper matrix composites have good neutron-absorption capacity, and the microstructure and size of boron do not affect the neutron-absorption performance of composites with the same content of boron. The hardness of the B-dispersion-strengthened Cu matrix composite obtained by nanoindentation test is about 3.04 GPa. Copper matrix composites with boron dispersion reinforcement exhibit high hardness and neutron-absorption characteristics.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36837073</pmid><doi>10.3390/ma16041443</doi><orcidid>https://orcid.org/0000-0002-0643-8543</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-02, Vol.16 (4), p.1443 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9961145 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Absorption cross sections Alloys Analysis Atoms & subatomic particles Boron Charged particles Composite materials Copper Dispersion hardening alloys Electrical resistivity Experiments Functional materials Graphite Hardness Metal matrix composites Monte Carlo method Nanoindentation Neutron absorption Neutrons Nuclear energy Polyethylene Powder metallurgy Radiation Thermal conductivity |
title | Neutron-Absorption Properties of B/Cu Composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T13%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutron-Absorption%20Properties%20of%20B/Cu%20Composites&rft.jtitle=Materials&rft.au=Wang,%20Haoran&rft.date=2023-02-08&rft.volume=16&rft.issue=4&rft.spage=1443&rft.pages=1443-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16041443&rft_dat=%3Cgale_pubme%3EA743159214%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779590197&rft_id=info:pmid/36837073&rft_galeid=A743159214&rfr_iscdi=true |