From simple to complex crystal chemistry in the RE–Au–Tt systems (RE = La, Ce, Pr, Nd; Tt = Ge, Pb)
Polar intermetallics are an intriguing class of compounds with complex relationships between composition and structure that are not fully understood. This work reports a systematic study of the underexplored ternary composition space RE–Au–Tt (RE = La, Ce, Pr, Nd; Tt = Ge, Pb) to expand our knowledg...
Gespeichert in:
Veröffentlicht in: | ACS Organic & Inorganic Au 2022-08, Vol.2 (4), p.318-326 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polar intermetallics are an intriguing class of compounds with complex relationships between composition and structure that are not fully understood. This work reports a systematic study of the underexplored ternary composition space RE–Au–Tt (RE = La, Ce, Pr, Nd; Tt = Ge, Pb) to expand our knowledge of the intriguing chemistry and diversity achievable with these metallic constituents. These composition spaces are particularly interesting because of the potential to find Au-bearing, highly polar intermetallic compounds. The elements were first reacted through arc welding under an inert atmosphere, followed by annealing at 850 °C. X-ray diffraction of the products identified seven unreported compounds ranging from the simple NaTl-type compounds La1.5Au2Pb0.5 and Nd2–x Au2Pb x to the more structurally complex La5AuPb3 in the Hf5CuSn3-type structure and Pu3Pd4-type RE3Au3Ge (RE = La, Ce, Pr, Nd). First-principles electronic structure calculations investigate the combination of Fermi surface–Brillouin zone interactions, electrostatic interactions, and delocalized metallic bonding that contributes to the formation of these phases. These calculations show that a mixture of electrostatic and metallic bonding plays a dominant role in these phases. The RE–Au–Tt composition space remains full of potential for discovering materials with relevant magnetic and quantum properties, provided the crystal chemistry can be comprehended. |
---|---|
ISSN: | 2694-247X 2694-247X |
DOI: | 10.1021/acsorginorgau.1c00057 |