Tidal Volume Level Estimation Using Respiratory Sounds

Respiratory sounds have been used as a noninvasive and convenient method to estimate respiratory flow and tidal volume. However, current methods need calibration, making them difficult to use in a home environment. A respiratory sound analysis method is proposed to estimate tidal volume levels durin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of healthcare engineering 2023, Vol.2023 (1), p.4994668
Hauptverfasser: Wang, Lurui, Jiang, Zhongwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 4994668
container_title Journal of healthcare engineering
container_volume 2023
creator Wang, Lurui
Jiang, Zhongwei
description Respiratory sounds have been used as a noninvasive and convenient method to estimate respiratory flow and tidal volume. However, current methods need calibration, making them difficult to use in a home environment. A respiratory sound analysis method is proposed to estimate tidal volume levels during sleep qualitatively. Respiratory sounds are filtered and segmented into one-minute clips, all clips are clustered into three categories: normal breathing/snoring/uncertain with agglomerative hierarchical clustering (AHC). Formant parameters are extracted to classify snoring clips into simple snoring and obstructive snoring with the K-means algorithm. For simple snoring clips, the tidal volume level is calculated based on snoring last time. For obstructive snoring clips, the tidal volume level is calculated by the maximum breathing pause interval. The performance of the proposed method is evaluated on an open dataset, PSG-Audio, in which full-night polysomnography (PSG) and tracheal sound were recorded simultaneously. The calculated tidal volume levels are compared with the corresponding lowest nocturnal oxygen saturation (LoO2) data. Experiments show that the proposed method calculates tidal volume levels with high accuracy and robustness.
doi_str_mv 10.1155/2023/4994668
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9949945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780486343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4018-8e05021ef81da1cb4e90d267fa5a17704ac33603364b1991f99fb54ee7f8ef953</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobszdeS29FLQuadI2uRFkzA8YCLp5G9L2ZIu0zUzayf69HftAbwwnJHAe3nN4ELok-I6QOB5FOKIjJgRLEn6C-hFmOIwoFqeHfyTiHhp6_4m7QwVlhJ6jHk04Y4KlfZTMTKHK4MOWbQXBFNZQBhPfmEo1xtbB3Jt6EbyBXxmnGus2wbtt68JfoDOtSg_D_TtA88fJbPwcTl-fXsYP0zBnmPCQA45xREBzUiiSZwwELqIk1SpWJE0xUzmlCe4uy4gQRAuhs5gBpJqDFjEdoPtd7qrNKihyqBunSrly3YJuI60y8m-nNku5sGvZKelqG3C9D3D2qwXfyMr4HMpS1WBbL6OUY8YTymiH3u7Q3FnvHejjGILl1rbc2pZ72x1-9Xu1I3xw2wE3O2Bp6kJ9m__jfgAH5Iaf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780486343</pqid></control><display><type>article</type><title>Tidal Volume Level Estimation Using Respiratory Sounds</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wang, Lurui ; Jiang, Zhongwei</creator><contributor>Zhang, Yatao</contributor><creatorcontrib>Wang, Lurui ; Jiang, Zhongwei ; Zhang, Yatao</creatorcontrib><description>Respiratory sounds have been used as a noninvasive and convenient method to estimate respiratory flow and tidal volume. However, current methods need calibration, making them difficult to use in a home environment. A respiratory sound analysis method is proposed to estimate tidal volume levels during sleep qualitatively. Respiratory sounds are filtered and segmented into one-minute clips, all clips are clustered into three categories: normal breathing/snoring/uncertain with agglomerative hierarchical clustering (AHC). Formant parameters are extracted to classify snoring clips into simple snoring and obstructive snoring with the K-means algorithm. For simple snoring clips, the tidal volume level is calculated based on snoring last time. For obstructive snoring clips, the tidal volume level is calculated by the maximum breathing pause interval. The performance of the proposed method is evaluated on an open dataset, PSG-Audio, in which full-night polysomnography (PSG) and tracheal sound were recorded simultaneously. The calculated tidal volume levels are compared with the corresponding lowest nocturnal oxygen saturation (LoO2) data. Experiments show that the proposed method calculates tidal volume levels with high accuracy and robustness.</description><identifier>ISSN: 2040-2295</identifier><identifier>ISSN: 2040-2309</identifier><identifier>EISSN: 2040-2309</identifier><identifier>DOI: 10.1155/2023/4994668</identifier><identifier>PMID: 36844947</identifier><language>eng</language><publisher>England: Hindawi</publisher><subject>Algorithms ; Humans ; Respiratory Sounds ; Sleep Apnea, Obstructive ; Snoring ; Tidal Volume</subject><ispartof>Journal of healthcare engineering, 2023, Vol.2023 (1), p.4994668</ispartof><rights>Copyright © 2023 Lurui Wang and Zhongwei Jiang.</rights><rights>Copyright © 2023 Lurui Wang and Zhongwei Jiang. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4018-8e05021ef81da1cb4e90d267fa5a17704ac33603364b1991f99fb54ee7f8ef953</citedby><cites>FETCH-LOGICAL-c4018-8e05021ef81da1cb4e90d267fa5a17704ac33603364b1991f99fb54ee7f8ef953</cites><orcidid>0000-0003-3772-4814 ; 0000-0002-4701-9812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949945/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949945/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,4026,27930,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36844947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Yatao</contributor><creatorcontrib>Wang, Lurui</creatorcontrib><creatorcontrib>Jiang, Zhongwei</creatorcontrib><title>Tidal Volume Level Estimation Using Respiratory Sounds</title><title>Journal of healthcare engineering</title><addtitle>J Healthc Eng</addtitle><description>Respiratory sounds have been used as a noninvasive and convenient method to estimate respiratory flow and tidal volume. However, current methods need calibration, making them difficult to use in a home environment. A respiratory sound analysis method is proposed to estimate tidal volume levels during sleep qualitatively. Respiratory sounds are filtered and segmented into one-minute clips, all clips are clustered into three categories: normal breathing/snoring/uncertain with agglomerative hierarchical clustering (AHC). Formant parameters are extracted to classify snoring clips into simple snoring and obstructive snoring with the K-means algorithm. For simple snoring clips, the tidal volume level is calculated based on snoring last time. For obstructive snoring clips, the tidal volume level is calculated by the maximum breathing pause interval. The performance of the proposed method is evaluated on an open dataset, PSG-Audio, in which full-night polysomnography (PSG) and tracheal sound were recorded simultaneously. The calculated tidal volume levels are compared with the corresponding lowest nocturnal oxygen saturation (LoO2) data. Experiments show that the proposed method calculates tidal volume levels with high accuracy and robustness.</description><subject>Algorithms</subject><subject>Humans</subject><subject>Respiratory Sounds</subject><subject>Sleep Apnea, Obstructive</subject><subject>Snoring</subject><subject>Tidal Volume</subject><issn>2040-2295</issn><issn>2040-2309</issn><issn>2040-2309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kF1LwzAUhoMobszdeS29FLQuadI2uRFkzA8YCLp5G9L2ZIu0zUzayf69HftAbwwnJHAe3nN4ELok-I6QOB5FOKIjJgRLEn6C-hFmOIwoFqeHfyTiHhp6_4m7QwVlhJ6jHk04Y4KlfZTMTKHK4MOWbQXBFNZQBhPfmEo1xtbB3Jt6EbyBXxmnGus2wbtt68JfoDOtSg_D_TtA88fJbPwcTl-fXsYP0zBnmPCQA45xREBzUiiSZwwELqIk1SpWJE0xUzmlCe4uy4gQRAuhs5gBpJqDFjEdoPtd7qrNKihyqBunSrly3YJuI60y8m-nNku5sGvZKelqG3C9D3D2qwXfyMr4HMpS1WBbL6OUY8YTymiH3u7Q3FnvHejjGILl1rbc2pZ72x1-9Xu1I3xw2wE3O2Bp6kJ9m__jfgAH5Iaf</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Wang, Lurui</creator><creator>Jiang, Zhongwei</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3772-4814</orcidid><orcidid>https://orcid.org/0000-0002-4701-9812</orcidid></search><sort><creationdate>2023</creationdate><title>Tidal Volume Level Estimation Using Respiratory Sounds</title><author>Wang, Lurui ; Jiang, Zhongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4018-8e05021ef81da1cb4e90d267fa5a17704ac33603364b1991f99fb54ee7f8ef953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Humans</topic><topic>Respiratory Sounds</topic><topic>Sleep Apnea, Obstructive</topic><topic>Snoring</topic><topic>Tidal Volume</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lurui</creatorcontrib><creatorcontrib>Jiang, Zhongwei</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of healthcare engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lurui</au><au>Jiang, Zhongwei</au><au>Zhang, Yatao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tidal Volume Level Estimation Using Respiratory Sounds</atitle><jtitle>Journal of healthcare engineering</jtitle><addtitle>J Healthc Eng</addtitle><date>2023</date><risdate>2023</risdate><volume>2023</volume><issue>1</issue><spage>4994668</spage><pages>4994668-</pages><issn>2040-2295</issn><issn>2040-2309</issn><eissn>2040-2309</eissn><abstract>Respiratory sounds have been used as a noninvasive and convenient method to estimate respiratory flow and tidal volume. However, current methods need calibration, making them difficult to use in a home environment. A respiratory sound analysis method is proposed to estimate tidal volume levels during sleep qualitatively. Respiratory sounds are filtered and segmented into one-minute clips, all clips are clustered into three categories: normal breathing/snoring/uncertain with agglomerative hierarchical clustering (AHC). Formant parameters are extracted to classify snoring clips into simple snoring and obstructive snoring with the K-means algorithm. For simple snoring clips, the tidal volume level is calculated based on snoring last time. For obstructive snoring clips, the tidal volume level is calculated by the maximum breathing pause interval. The performance of the proposed method is evaluated on an open dataset, PSG-Audio, in which full-night polysomnography (PSG) and tracheal sound were recorded simultaneously. The calculated tidal volume levels are compared with the corresponding lowest nocturnal oxygen saturation (LoO2) data. Experiments show that the proposed method calculates tidal volume levels with high accuracy and robustness.</abstract><cop>England</cop><pub>Hindawi</pub><pmid>36844947</pmid><doi>10.1155/2023/4994668</doi><orcidid>https://orcid.org/0000-0003-3772-4814</orcidid><orcidid>https://orcid.org/0000-0002-4701-9812</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-2295
ispartof Journal of healthcare engineering, 2023, Vol.2023 (1), p.4994668
issn 2040-2295
2040-2309
2040-2309
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9949945
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Humans
Respiratory Sounds
Sleep Apnea, Obstructive
Snoring
Tidal Volume
title Tidal Volume Level Estimation Using Respiratory Sounds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T19%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tidal%20Volume%20Level%20Estimation%20Using%20Respiratory%20Sounds&rft.jtitle=Journal%20of%20healthcare%20engineering&rft.au=Wang,%20Lurui&rft.date=2023&rft.volume=2023&rft.issue=1&rft.spage=4994668&rft.pages=4994668-&rft.issn=2040-2295&rft.eissn=2040-2309&rft_id=info:doi/10.1155/2023/4994668&rft_dat=%3Cproquest_pubme%3E2780486343%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780486343&rft_id=info:pmid/36844947&rfr_iscdi=true