CRISPR‐induced miRNA156‐recognition element mutations in TaSPL13 improve multiple agronomic traits in wheat

Summary Increase in grain yield is always a major objective of wheat genetic improvement. The SQUAMOSA promoter‐binding protein‐like (SPL) genes, coding for a small family of diverse plant‐specific transcription factors, represent important targets for improving grain yield and other major agronomic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2023-03, Vol.21 (3), p.536-548
Hauptverfasser: Gupta, Ajay, Hua, Lei, Zhang, Zhengzhi, Yang, Bing, Li, Wanlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 548
container_issue 3
container_start_page 536
container_title Plant biotechnology journal
container_volume 21
creator Gupta, Ajay
Hua, Lei
Zhang, Zhengzhi
Yang, Bing
Li, Wanlong
description Summary Increase in grain yield is always a major objective of wheat genetic improvement. The SQUAMOSA promoter‐binding protein‐like (SPL) genes, coding for a small family of diverse plant‐specific transcription factors, represent important targets for improving grain yield and other major agronomic traits in rice. The function of the SPL genes in wheat remains to be investigated in this respect. In this study, we identified 56 wheat orthologues of rice SPL genes belonging to 19 homoeologous groups. Like in rice, nine orthologous TaSPL genes harbour the microRNA156 recognition elements (MRE) in their last exons except for TaSPL13, which harbour the MRE in its 3′‐untranslated region (3′UTR). We modified the MRE of TaSPL13 using CRISPR‐Cas9 and generated 12 mutations in the three homoeologous genes. As expected, the MRE mutations led to an approximately two‐fold increase in the TaSPL13 mutant transcripts. The phenotypic evaluation showed that the MRE mutations in TaSPL13 resulted in a decrease in flowering time, tiller number, and plant height, and a concomitantly increase in grain size and number. The results show that the TaSPL13 mutants exhibit a combination of different phenotypes observed in Arabidopsis AtSPL3/4/5 mutants and rice OsSPL13/14/16 mutants and hold great potential in improving wheat yield by simultaneously increasing grain size and number and by refining plant architecture. The novel TaSPL13 mutations generated can be utilized in wheat breeding programmes to improve these agronomic traits.
doi_str_mv 10.1111/pbi.13969
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9946137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738189156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4439-1384f2705d6df35b4047e2d2ee0c9dfed9273b14a893f66e185e9f3d4eca12093</originalsourceid><addsrcrecordid>eNp1kc1OGzEUha2qFVDKoi-ARuqGLgL-G894UylE_YkUtVGga8ux7wSjGXuwZ0Ds-gh9xj5JDaFRqVRvrnXvp-PjexB6S_ApyeesX7tTwqSQL9AB4aKaVKKkL3d3zvfR65SuMaZElGIP7TPBMaOMHqAwW80vlqtfP346b0cDtujc6uuUlCK3Ipiw8W5wwRfQQgd-KLpx0A-NVDhfXOqL5YKwwnV9DLeQh-3g-hYKvYnBh86ZYojaDY_w3RXo4Q161eg2wdFTPUTfP328nH2ZLL59ns-mi4nhnMkJYTVvaIVLK2zDyjXHvAJqKQA20jZgJa3YmnBdS9YIAaQuQTbMcjCaUCzZIfqw1e3HdQfWZOtRt6qPrtPxXgXt1POJd1dqE26VlFwQVmWBkyeBGG5GSIPqXDLQttpDGJPK79eklnlRGX33D3odxujz9zJV1YKXlJeZer-lTAwpRWh2ZghWDzGqHKN6jDGzx3-735F_csvA2Ra4cy3c_19JLc_nW8nf3AmpgQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778645245</pqid></control><display><type>article</type><title>CRISPR‐induced miRNA156‐recognition element mutations in TaSPL13 improve multiple agronomic traits in wheat</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Wiley Online Library All Journals</source><creator>Gupta, Ajay ; Hua, Lei ; Zhang, Zhengzhi ; Yang, Bing ; Li, Wanlong</creator><creatorcontrib>Gupta, Ajay ; Hua, Lei ; Zhang, Zhengzhi ; Yang, Bing ; Li, Wanlong</creatorcontrib><description>Summary Increase in grain yield is always a major objective of wheat genetic improvement. The SQUAMOSA promoter‐binding protein‐like (SPL) genes, coding for a small family of diverse plant‐specific transcription factors, represent important targets for improving grain yield and other major agronomic traits in rice. The function of the SPL genes in wheat remains to be investigated in this respect. In this study, we identified 56 wheat orthologues of rice SPL genes belonging to 19 homoeologous groups. Like in rice, nine orthologous TaSPL genes harbour the microRNA156 recognition elements (MRE) in their last exons except for TaSPL13, which harbour the MRE in its 3′‐untranslated region (3′UTR). We modified the MRE of TaSPL13 using CRISPR‐Cas9 and generated 12 mutations in the three homoeologous genes. As expected, the MRE mutations led to an approximately two‐fold increase in the TaSPL13 mutant transcripts. The phenotypic evaluation showed that the MRE mutations in TaSPL13 resulted in a decrease in flowering time, tiller number, and plant height, and a concomitantly increase in grain size and number. The results show that the TaSPL13 mutants exhibit a combination of different phenotypes observed in Arabidopsis AtSPL3/4/5 mutants and rice OsSPL13/14/16 mutants and hold great potential in improving wheat yield by simultaneously increasing grain size and number and by refining plant architecture. The novel TaSPL13 mutations generated can be utilized in wheat breeding programmes to improve these agronomic traits.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.13969</identifier><identifier>PMID: 36403232</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>3' Untranslated regions ; Agricultural production ; Agronomy ; Cell division ; CRISPR ; Crop yield ; Edible Grain - genetics ; Exons ; Flowering ; Genes ; Genetic improvement ; Genomes ; Grain ; Grain size ; microRNA156 ; miRNA ; Mutants ; Mutation ; Particle size ; Phase transitions ; Phenotype ; Phenotypes ; Phylogenetics ; plant architecture ; Plant Breeding ; Promoter Regions, Genetic ; Recognition ; Regulation ; Rice ; SQUAMOSA promoter‐like (SPL) ; Transcription factors ; Triticum - genetics ; Wheat ; wheat genome editing ; yield</subject><ispartof>Plant biotechnology journal, 2023-03, Vol.21 (3), p.536-548</ispartof><rights>2022 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4439-1384f2705d6df35b4047e2d2ee0c9dfed9273b14a893f66e185e9f3d4eca12093</citedby><cites>FETCH-LOGICAL-c4439-1384f2705d6df35b4047e2d2ee0c9dfed9273b14a893f66e185e9f3d4eca12093</cites><orcidid>0000-0002-2293-3384 ; 0000-0001-5886-1426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.13969$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.13969$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36403232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Ajay</creatorcontrib><creatorcontrib>Hua, Lei</creatorcontrib><creatorcontrib>Zhang, Zhengzhi</creatorcontrib><creatorcontrib>Yang, Bing</creatorcontrib><creatorcontrib>Li, Wanlong</creatorcontrib><title>CRISPR‐induced miRNA156‐recognition element mutations in TaSPL13 improve multiple agronomic traits in wheat</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary Increase in grain yield is always a major objective of wheat genetic improvement. The SQUAMOSA promoter‐binding protein‐like (SPL) genes, coding for a small family of diverse plant‐specific transcription factors, represent important targets for improving grain yield and other major agronomic traits in rice. The function of the SPL genes in wheat remains to be investigated in this respect. In this study, we identified 56 wheat orthologues of rice SPL genes belonging to 19 homoeologous groups. Like in rice, nine orthologous TaSPL genes harbour the microRNA156 recognition elements (MRE) in their last exons except for TaSPL13, which harbour the MRE in its 3′‐untranslated region (3′UTR). We modified the MRE of TaSPL13 using CRISPR‐Cas9 and generated 12 mutations in the three homoeologous genes. As expected, the MRE mutations led to an approximately two‐fold increase in the TaSPL13 mutant transcripts. The phenotypic evaluation showed that the MRE mutations in TaSPL13 resulted in a decrease in flowering time, tiller number, and plant height, and a concomitantly increase in grain size and number. The results show that the TaSPL13 mutants exhibit a combination of different phenotypes observed in Arabidopsis AtSPL3/4/5 mutants and rice OsSPL13/14/16 mutants and hold great potential in improving wheat yield by simultaneously increasing grain size and number and by refining plant architecture. The novel TaSPL13 mutations generated can be utilized in wheat breeding programmes to improve these agronomic traits.</description><subject>3' Untranslated regions</subject><subject>Agricultural production</subject><subject>Agronomy</subject><subject>Cell division</subject><subject>CRISPR</subject><subject>Crop yield</subject><subject>Edible Grain - genetics</subject><subject>Exons</subject><subject>Flowering</subject><subject>Genes</subject><subject>Genetic improvement</subject><subject>Genomes</subject><subject>Grain</subject><subject>Grain size</subject><subject>microRNA156</subject><subject>miRNA</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Particle size</subject><subject>Phase transitions</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phylogenetics</subject><subject>plant architecture</subject><subject>Plant Breeding</subject><subject>Promoter Regions, Genetic</subject><subject>Recognition</subject><subject>Regulation</subject><subject>Rice</subject><subject>SQUAMOSA promoter‐like (SPL)</subject><subject>Transcription factors</subject><subject>Triticum - genetics</subject><subject>Wheat</subject><subject>wheat genome editing</subject><subject>yield</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1OGzEUha2qFVDKoi-ARuqGLgL-G894UylE_YkUtVGga8ux7wSjGXuwZ0Ds-gh9xj5JDaFRqVRvrnXvp-PjexB6S_ApyeesX7tTwqSQL9AB4aKaVKKkL3d3zvfR65SuMaZElGIP7TPBMaOMHqAwW80vlqtfP346b0cDtujc6uuUlCK3Ipiw8W5wwRfQQgd-KLpx0A-NVDhfXOqL5YKwwnV9DLeQh-3g-hYKvYnBh86ZYojaDY_w3RXo4Q161eg2wdFTPUTfP328nH2ZLL59ns-mi4nhnMkJYTVvaIVLK2zDyjXHvAJqKQA20jZgJa3YmnBdS9YIAaQuQTbMcjCaUCzZIfqw1e3HdQfWZOtRt6qPrtPxXgXt1POJd1dqE26VlFwQVmWBkyeBGG5GSIPqXDLQttpDGJPK79eklnlRGX33D3odxujz9zJV1YKXlJeZer-lTAwpRWh2ZghWDzGqHKN6jDGzx3-735F_csvA2Ra4cy3c_19JLc_nW8nf3AmpgQ</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Gupta, Ajay</creator><creator>Hua, Lei</creator><creator>Zhang, Zhengzhi</creator><creator>Yang, Bing</creator><creator>Li, Wanlong</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2293-3384</orcidid><orcidid>https://orcid.org/0000-0001-5886-1426</orcidid></search><sort><creationdate>202303</creationdate><title>CRISPR‐induced miRNA156‐recognition element mutations in TaSPL13 improve multiple agronomic traits in wheat</title><author>Gupta, Ajay ; Hua, Lei ; Zhang, Zhengzhi ; Yang, Bing ; Li, Wanlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4439-1384f2705d6df35b4047e2d2ee0c9dfed9273b14a893f66e185e9f3d4eca12093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3' Untranslated regions</topic><topic>Agricultural production</topic><topic>Agronomy</topic><topic>Cell division</topic><topic>CRISPR</topic><topic>Crop yield</topic><topic>Edible Grain - genetics</topic><topic>Exons</topic><topic>Flowering</topic><topic>Genes</topic><topic>Genetic improvement</topic><topic>Genomes</topic><topic>Grain</topic><topic>Grain size</topic><topic>microRNA156</topic><topic>miRNA</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Particle size</topic><topic>Phase transitions</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phylogenetics</topic><topic>plant architecture</topic><topic>Plant Breeding</topic><topic>Promoter Regions, Genetic</topic><topic>Recognition</topic><topic>Regulation</topic><topic>Rice</topic><topic>SQUAMOSA promoter‐like (SPL)</topic><topic>Transcription factors</topic><topic>Triticum - genetics</topic><topic>Wheat</topic><topic>wheat genome editing</topic><topic>yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Ajay</creatorcontrib><creatorcontrib>Hua, Lei</creatorcontrib><creatorcontrib>Zhang, Zhengzhi</creatorcontrib><creatorcontrib>Yang, Bing</creatorcontrib><creatorcontrib>Li, Wanlong</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Ajay</au><au>Hua, Lei</au><au>Zhang, Zhengzhi</au><au>Yang, Bing</au><au>Li, Wanlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR‐induced miRNA156‐recognition element mutations in TaSPL13 improve multiple agronomic traits in wheat</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2023-03</date><risdate>2023</risdate><volume>21</volume><issue>3</issue><spage>536</spage><epage>548</epage><pages>536-548</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary Increase in grain yield is always a major objective of wheat genetic improvement. The SQUAMOSA promoter‐binding protein‐like (SPL) genes, coding for a small family of diverse plant‐specific transcription factors, represent important targets for improving grain yield and other major agronomic traits in rice. The function of the SPL genes in wheat remains to be investigated in this respect. In this study, we identified 56 wheat orthologues of rice SPL genes belonging to 19 homoeologous groups. Like in rice, nine orthologous TaSPL genes harbour the microRNA156 recognition elements (MRE) in their last exons except for TaSPL13, which harbour the MRE in its 3′‐untranslated region (3′UTR). We modified the MRE of TaSPL13 using CRISPR‐Cas9 and generated 12 mutations in the three homoeologous genes. As expected, the MRE mutations led to an approximately two‐fold increase in the TaSPL13 mutant transcripts. The phenotypic evaluation showed that the MRE mutations in TaSPL13 resulted in a decrease in flowering time, tiller number, and plant height, and a concomitantly increase in grain size and number. The results show that the TaSPL13 mutants exhibit a combination of different phenotypes observed in Arabidopsis AtSPL3/4/5 mutants and rice OsSPL13/14/16 mutants and hold great potential in improving wheat yield by simultaneously increasing grain size and number and by refining plant architecture. The novel TaSPL13 mutations generated can be utilized in wheat breeding programmes to improve these agronomic traits.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36403232</pmid><doi>10.1111/pbi.13969</doi><tpages>548</tpages><orcidid>https://orcid.org/0000-0002-2293-3384</orcidid><orcidid>https://orcid.org/0000-0001-5886-1426</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2023-03, Vol.21 (3), p.536-548
issn 1467-7644
1467-7652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9946137
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Wiley Online Library All Journals
subjects 3' Untranslated regions
Agricultural production
Agronomy
Cell division
CRISPR
Crop yield
Edible Grain - genetics
Exons
Flowering
Genes
Genetic improvement
Genomes
Grain
Grain size
microRNA156
miRNA
Mutants
Mutation
Particle size
Phase transitions
Phenotype
Phenotypes
Phylogenetics
plant architecture
Plant Breeding
Promoter Regions, Genetic
Recognition
Regulation
Rice
SQUAMOSA promoter‐like (SPL)
Transcription factors
Triticum - genetics
Wheat
wheat genome editing
yield
title CRISPR‐induced miRNA156‐recognition element mutations in TaSPL13 improve multiple agronomic traits in wheat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A25%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR%E2%80%90induced%20miRNA156%E2%80%90recognition%20element%20mutations%20in%20TaSPL13%20improve%20multiple%20agronomic%20traits%20in%20wheat&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Gupta,%20Ajay&rft.date=2023-03&rft.volume=21&rft.issue=3&rft.spage=536&rft.epage=548&rft.pages=536-548&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.13969&rft_dat=%3Cproquest_pubme%3E2738189156%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778645245&rft_id=info:pmid/36403232&rfr_iscdi=true