Inferring the T cell repertoire dynamics of healthy individuals
The adaptive immune system is a diverse ecosystem that responds to pathogens by selecting cells with specific receptors. While clonal expansion in response to particular immune challenges has been extensively studied, we do not know the neutral dynamics that drive the immune system in the absence of...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2023-01, Vol.120 (4), p.e2207516120-e2207516120 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2207516120 |
---|---|
container_issue | 4 |
container_start_page | e2207516120 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 120 |
creator | Bensouda Koraichi, Meriem Ferri, Silvia Walczak, Aleksandra M Mora, Thierry |
description | The adaptive immune system is a diverse ecosystem that responds to pathogens by selecting cells with specific receptors. While clonal expansion in response to particular immune challenges has been extensively studied, we do not know the neutral dynamics that drive the immune system in the absence of strong stimuli. Here, we learn the parameters that underlie the clonal dynamics of the T cell repertoire in healthy individuals of different ages, by applying Bayesian inference to longitudinal immune repertoire sequencing (RepSeq) data. Quantifying the experimental noise accurately for a given RepSeq technique allows us to disentangle real changes in clonal frequencies from noise. We find that the data are consistent with clone sizes following a geometric Brownian motion and show that its predicted steady state is in quantitative agreement with the observed power-law behavior of the clone-size distribution. The inferred turnover time scale of the repertoire increases with patient age and depends on the clone size in some individuals. |
doi_str_mv | 10.1073/pnas.2207516120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9942919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2768225348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-4ba84220c20a0668acaee318a83576447e1f5fb9708debe08dfe754b1add3d813</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhq2qqCy0596qSL20h8D4M_alCKFSkFbiAmfLSSbEKOts7WSl_fd1tJQWLjPS-Jl3xvMS8pnCGYWKn2-DS2eMQSWpogzekRUFQ0slDLwnKwBWlVowcUxOUnoCACM1fCDHXCllssCKXNyGDmP04bGYeizuiwaHoYi4xTiNPmLR7oPb-CYVY1f06Iap3xc-tH7n29kN6SM56nLCT8_5lDxc_7y_uinXd79ury7XZSOknEpRu7wHg4aBA6W0axwip9ppLislRIW0k11tKtAt1phjh5UUNXVty1tN-Sn5cdDdzvUG2wbDFN1gt9FvXNzb0Xn7-iX43j6OO2uMYIaaLPD9INC_abu5XNulBoJJRo3YLcO-PQ-L4-8Z02Q3Pi2HcQHHOVlWKc2Y5EJn9Osb9GmcY8inWCijsiJnmTo_UE0cU4rYvWxAwS5G2sVI-8_I3PHl__--8H-d438ABOqZKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769621932</pqid></control><display><type>article</type><title>Inferring the T cell repertoire dynamics of healthy individuals</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bensouda Koraichi, Meriem ; Ferri, Silvia ; Walczak, Aleksandra M ; Mora, Thierry</creator><creatorcontrib>Bensouda Koraichi, Meriem ; Ferri, Silvia ; Walczak, Aleksandra M ; Mora, Thierry</creatorcontrib><description>The adaptive immune system is a diverse ecosystem that responds to pathogens by selecting cells with specific receptors. While clonal expansion in response to particular immune challenges has been extensively studied, we do not know the neutral dynamics that drive the immune system in the absence of strong stimuli. Here, we learn the parameters that underlie the clonal dynamics of the T cell repertoire in healthy individuals of different ages, by applying Bayesian inference to longitudinal immune repertoire sequencing (RepSeq) data. Quantifying the experimental noise accurately for a given RepSeq technique allows us to disentangle real changes in clonal frequencies from noise. We find that the data are consistent with clone sizes following a geometric Brownian motion and show that its predicted steady state is in quantitative agreement with the observed power-law behavior of the clone-size distribution. The inferred turnover time scale of the repertoire increases with patient age and depends on the clone size in some individuals.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2207516120</identifier><identifier>PMID: 36669107</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adaptive systems ; Bayes Theorem ; Bayesian analysis ; Biological Sciences ; Brownian motion ; Clone Cells ; Ecosystem ; Humans ; Immune system ; Life Sciences ; Lymphocytes ; Lymphocytes T ; Physical Sciences ; Receptors, Antigen, T-Cell - genetics ; Size distribution ; Statistical inference ; T-Lymphocytes ; Turnover time</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-01, Vol.120 (4), p.e2207516120-e2207516120</ispartof><rights>Copyright National Academy of Sciences Jan 24, 2023</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-4ba84220c20a0668acaee318a83576447e1f5fb9708debe08dfe754b1add3d813</citedby><cites>FETCH-LOGICAL-c455t-4ba84220c20a0668acaee318a83576447e1f5fb9708debe08dfe754b1add3d813</cites><orcidid>0000-0002-2686-5702 ; 0000-0002-5456-9361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942919/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942919/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36669107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04252194$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bensouda Koraichi, Meriem</creatorcontrib><creatorcontrib>Ferri, Silvia</creatorcontrib><creatorcontrib>Walczak, Aleksandra M</creatorcontrib><creatorcontrib>Mora, Thierry</creatorcontrib><title>Inferring the T cell repertoire dynamics of healthy individuals</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The adaptive immune system is a diverse ecosystem that responds to pathogens by selecting cells with specific receptors. While clonal expansion in response to particular immune challenges has been extensively studied, we do not know the neutral dynamics that drive the immune system in the absence of strong stimuli. Here, we learn the parameters that underlie the clonal dynamics of the T cell repertoire in healthy individuals of different ages, by applying Bayesian inference to longitudinal immune repertoire sequencing (RepSeq) data. Quantifying the experimental noise accurately for a given RepSeq technique allows us to disentangle real changes in clonal frequencies from noise. We find that the data are consistent with clone sizes following a geometric Brownian motion and show that its predicted steady state is in quantitative agreement with the observed power-law behavior of the clone-size distribution. The inferred turnover time scale of the repertoire increases with patient age and depends on the clone size in some individuals.</description><subject>Adaptive systems</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biological Sciences</subject><subject>Brownian motion</subject><subject>Clone Cells</subject><subject>Ecosystem</subject><subject>Humans</subject><subject>Immune system</subject><subject>Life Sciences</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Physical Sciences</subject><subject>Receptors, Antigen, T-Cell - genetics</subject><subject>Size distribution</subject><subject>Statistical inference</subject><subject>T-Lymphocytes</subject><subject>Turnover time</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1P3DAQhq2qqCy0596qSL20h8D4M_alCKFSkFbiAmfLSSbEKOts7WSl_fd1tJQWLjPS-Jl3xvMS8pnCGYWKn2-DS2eMQSWpogzekRUFQ0slDLwnKwBWlVowcUxOUnoCACM1fCDHXCllssCKXNyGDmP04bGYeizuiwaHoYi4xTiNPmLR7oPb-CYVY1f06Iap3xc-tH7n29kN6SM56nLCT8_5lDxc_7y_uinXd79ury7XZSOknEpRu7wHg4aBA6W0axwip9ppLislRIW0k11tKtAt1phjh5UUNXVty1tN-Sn5cdDdzvUG2wbDFN1gt9FvXNzb0Xn7-iX43j6OO2uMYIaaLPD9INC_abu5XNulBoJJRo3YLcO-PQ-L4-8Z02Q3Pi2HcQHHOVlWKc2Y5EJn9Osb9GmcY8inWCijsiJnmTo_UE0cU4rYvWxAwS5G2sVI-8_I3PHl__--8H-d438ABOqZKw</recordid><startdate>20230124</startdate><enddate>20230124</enddate><creator>Bensouda Koraichi, Meriem</creator><creator>Ferri, Silvia</creator><creator>Walczak, Aleksandra M</creator><creator>Mora, Thierry</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2686-5702</orcidid><orcidid>https://orcid.org/0000-0002-5456-9361</orcidid></search><sort><creationdate>20230124</creationdate><title>Inferring the T cell repertoire dynamics of healthy individuals</title><author>Bensouda Koraichi, Meriem ; Ferri, Silvia ; Walczak, Aleksandra M ; Mora, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-4ba84220c20a0668acaee318a83576447e1f5fb9708debe08dfe754b1add3d813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive systems</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biological Sciences</topic><topic>Brownian motion</topic><topic>Clone Cells</topic><topic>Ecosystem</topic><topic>Humans</topic><topic>Immune system</topic><topic>Life Sciences</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Physical Sciences</topic><topic>Receptors, Antigen, T-Cell - genetics</topic><topic>Size distribution</topic><topic>Statistical inference</topic><topic>T-Lymphocytes</topic><topic>Turnover time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bensouda Koraichi, Meriem</creatorcontrib><creatorcontrib>Ferri, Silvia</creatorcontrib><creatorcontrib>Walczak, Aleksandra M</creatorcontrib><creatorcontrib>Mora, Thierry</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bensouda Koraichi, Meriem</au><au>Ferri, Silvia</au><au>Walczak, Aleksandra M</au><au>Mora, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring the T cell repertoire dynamics of healthy individuals</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-01-24</date><risdate>2023</risdate><volume>120</volume><issue>4</issue><spage>e2207516120</spage><epage>e2207516120</epage><pages>e2207516120-e2207516120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The adaptive immune system is a diverse ecosystem that responds to pathogens by selecting cells with specific receptors. While clonal expansion in response to particular immune challenges has been extensively studied, we do not know the neutral dynamics that drive the immune system in the absence of strong stimuli. Here, we learn the parameters that underlie the clonal dynamics of the T cell repertoire in healthy individuals of different ages, by applying Bayesian inference to longitudinal immune repertoire sequencing (RepSeq) data. Quantifying the experimental noise accurately for a given RepSeq technique allows us to disentangle real changes in clonal frequencies from noise. We find that the data are consistent with clone sizes following a geometric Brownian motion and show that its predicted steady state is in quantitative agreement with the observed power-law behavior of the clone-size distribution. The inferred turnover time scale of the repertoire increases with patient age and depends on the clone size in some individuals.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36669107</pmid><doi>10.1073/pnas.2207516120</doi><orcidid>https://orcid.org/0000-0002-2686-5702</orcidid><orcidid>https://orcid.org/0000-0002-5456-9361</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2023-01, Vol.120 (4), p.e2207516120-e2207516120 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9942919 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adaptive systems Bayes Theorem Bayesian analysis Biological Sciences Brownian motion Clone Cells Ecosystem Humans Immune system Life Sciences Lymphocytes Lymphocytes T Physical Sciences Receptors, Antigen, T-Cell - genetics Size distribution Statistical inference T-Lymphocytes Turnover time |
title | Inferring the T cell repertoire dynamics of healthy individuals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20the%20T%20cell%20repertoire%20dynamics%20of%20healthy%20individuals&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bensouda%20Koraichi,%20Meriem&rft.date=2023-01-24&rft.volume=120&rft.issue=4&rft.spage=e2207516120&rft.epage=e2207516120&rft.pages=e2207516120-e2207516120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2207516120&rft_dat=%3Cproquest_pubme%3E2768225348%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769621932&rft_id=info:pmid/36669107&rfr_iscdi=true |