Direct identification of the rotary angle of ATP cleavage in F1-ATPase from Bacillus PS3

F1-ATPase is the world’s smallest biological rotary motor driven by ATP hydrolysis at three catalytic β subunits. The 120° rotational step of the central shaft γ consists of 80° substep driven by ATP binding and a subsequent 40° substep. In order to correlate timing of ATP cleavage at a specific cat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2023-02, Vol.122 (3), p.554-564
Hauptverfasser: Hasimoto, Yuh, Sugawa, Mitsuhiro, Nishiguchi, Yoshihiro, Aeba, Fumihiro, Tagawa, Ayari, Suga, Kenta, Tanaka, Nobukiyo, Ueno, Hiroshi, Yamashita, Hiroki, Yokota, Ryuichi, Masaike, Tomoko, Nishizaka, Takayuki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 564
container_issue 3
container_start_page 554
container_title Biophysical journal
container_volume 122
creator Hasimoto, Yuh
Sugawa, Mitsuhiro
Nishiguchi, Yoshihiro
Aeba, Fumihiro
Tagawa, Ayari
Suga, Kenta
Tanaka, Nobukiyo
Ueno, Hiroshi
Yamashita, Hiroki
Yokota, Ryuichi
Masaike, Tomoko
Nishizaka, Takayuki
description F1-ATPase is the world’s smallest biological rotary motor driven by ATP hydrolysis at three catalytic β subunits. The 120° rotational step of the central shaft γ consists of 80° substep driven by ATP binding and a subsequent 40° substep. In order to correlate timing of ATP cleavage at a specific catalytic site with a rotary angle, we designed a new F1-ATPase (F1) from thermophilic Bacillus PS3 carrying β(E190D/F414E/F420E) mutations, which cause extremely slow rates of both ATP cleavage and ATP binding. We produced an F1 molecule that consists of one mutant β and two wild-type βs (hybrid F1). As a result, the new hybrid F1 showed two pausing angles that are separated by 200°. They are attributable to two slowed reaction steps in the mutated β, thus providing the direct evidence that ATP cleavage occurs at 200° rather than 80° subsequent to ATP binding at 0°. This scenario resolves the long-standing unclarified issue in the chemomechanical coupling scheme and gives insights into the mechanism of driving unidirectional rotation. [Display omitted]
doi_str_mv 10.1016/j.bpj.2022.12.027
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9941720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349522039376</els_id><sourcerecordid>2758106347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-ef69a80d70c90ede70d8056b2e31d4eea9694fddfb8fa783ac0791261aaff1933</originalsourceid><addsrcrecordid>eNp9UU1r3DAQFaWh2ab9Ab3p2IvdkWzLFoVCmjRNIZBAUuhNzEqjjRavtZW8C_330XZDoJeeBt689-bjMfZBQC1AqE_rerld1xKkrIWsQfav2EJ0rawABvWaLQBAVU2ru1P2Nuc1gJAdiDfstFGdgmGQC_brMiSyMw-Opjn4YHEOceLR8_mReIozpj8cp9VIB-z84Y7bkXCPK-Jh4leiKhBm4j7FDf-KNozjLvO7--YdO_E4Znr_XM_Yz6tvDxfX1c3t9x8X5zeVbXU7V-SVxgFcD1YDOerBDdCppaRGuJYItdKtd84vB4_90KCFXgupBKL3QjfNGfty9N3ulhtytpyRcDTbFDZldRMxmH87U3g0q7g3Wreil1AMPj4bpPh7R3k2m5AtjSNOFHfZyL4bBKim7QtVHKk2xZwT-ZcxAswhEbM2JRFzSMQIaUoiRfP5qKHyhH2gZLINNFlyfx9vXAz_UT8BHo-ScQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758106347</pqid></control><display><type>article</type><title>Direct identification of the rotary angle of ATP cleavage in F1-ATPase from Bacillus PS3</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Hasimoto, Yuh ; Sugawa, Mitsuhiro ; Nishiguchi, Yoshihiro ; Aeba, Fumihiro ; Tagawa, Ayari ; Suga, Kenta ; Tanaka, Nobukiyo ; Ueno, Hiroshi ; Yamashita, Hiroki ; Yokota, Ryuichi ; Masaike, Tomoko ; Nishizaka, Takayuki</creator><creatorcontrib>Hasimoto, Yuh ; Sugawa, Mitsuhiro ; Nishiguchi, Yoshihiro ; Aeba, Fumihiro ; Tagawa, Ayari ; Suga, Kenta ; Tanaka, Nobukiyo ; Ueno, Hiroshi ; Yamashita, Hiroki ; Yokota, Ryuichi ; Masaike, Tomoko ; Nishizaka, Takayuki</creatorcontrib><description>F1-ATPase is the world’s smallest biological rotary motor driven by ATP hydrolysis at three catalytic β subunits. The 120° rotational step of the central shaft γ consists of 80° substep driven by ATP binding and a subsequent 40° substep. In order to correlate timing of ATP cleavage at a specific catalytic site with a rotary angle, we designed a new F1-ATPase (F1) from thermophilic Bacillus PS3 carrying β(E190D/F414E/F420E) mutations, which cause extremely slow rates of both ATP cleavage and ATP binding. We produced an F1 molecule that consists of one mutant β and two wild-type βs (hybrid F1). As a result, the new hybrid F1 showed two pausing angles that are separated by 200°. They are attributable to two slowed reaction steps in the mutated β, thus providing the direct evidence that ATP cleavage occurs at 200° rather than 80° subsequent to ATP binding at 0°. This scenario resolves the long-standing unclarified issue in the chemomechanical coupling scheme and gives insights into the mechanism of driving unidirectional rotation. [Display omitted]</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2022.12.027</identifier><identifier>PMID: 36560882</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Biophysical journal, 2023-02, Vol.122 (3), p.554-564</ispartof><rights>2023 Biophysical Society</rights><rights>2023 Biophysical Society. 2023 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-ef69a80d70c90ede70d8056b2e31d4eea9694fddfb8fa783ac0791261aaff1933</citedby><cites>FETCH-LOGICAL-c494t-ef69a80d70c90ede70d8056b2e31d4eea9694fddfb8fa783ac0791261aaff1933</cites><orcidid>0000-0003-3290-1893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941720/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2022.12.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3548,27922,27923,45993,53789,53791</link.rule.ids></links><search><creatorcontrib>Hasimoto, Yuh</creatorcontrib><creatorcontrib>Sugawa, Mitsuhiro</creatorcontrib><creatorcontrib>Nishiguchi, Yoshihiro</creatorcontrib><creatorcontrib>Aeba, Fumihiro</creatorcontrib><creatorcontrib>Tagawa, Ayari</creatorcontrib><creatorcontrib>Suga, Kenta</creatorcontrib><creatorcontrib>Tanaka, Nobukiyo</creatorcontrib><creatorcontrib>Ueno, Hiroshi</creatorcontrib><creatorcontrib>Yamashita, Hiroki</creatorcontrib><creatorcontrib>Yokota, Ryuichi</creatorcontrib><creatorcontrib>Masaike, Tomoko</creatorcontrib><creatorcontrib>Nishizaka, Takayuki</creatorcontrib><title>Direct identification of the rotary angle of ATP cleavage in F1-ATPase from Bacillus PS3</title><title>Biophysical journal</title><description>F1-ATPase is the world’s smallest biological rotary motor driven by ATP hydrolysis at three catalytic β subunits. The 120° rotational step of the central shaft γ consists of 80° substep driven by ATP binding and a subsequent 40° substep. In order to correlate timing of ATP cleavage at a specific catalytic site with a rotary angle, we designed a new F1-ATPase (F1) from thermophilic Bacillus PS3 carrying β(E190D/F414E/F420E) mutations, which cause extremely slow rates of both ATP cleavage and ATP binding. We produced an F1 molecule that consists of one mutant β and two wild-type βs (hybrid F1). As a result, the new hybrid F1 showed two pausing angles that are separated by 200°. They are attributable to two slowed reaction steps in the mutated β, thus providing the direct evidence that ATP cleavage occurs at 200° rather than 80° subsequent to ATP binding at 0°. This scenario resolves the long-standing unclarified issue in the chemomechanical coupling scheme and gives insights into the mechanism of driving unidirectional rotation. [Display omitted]</description><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UU1r3DAQFaWh2ab9Ab3p2IvdkWzLFoVCmjRNIZBAUuhNzEqjjRavtZW8C_330XZDoJeeBt689-bjMfZBQC1AqE_rerld1xKkrIWsQfav2EJ0rawABvWaLQBAVU2ru1P2Nuc1gJAdiDfstFGdgmGQC_brMiSyMw-Opjn4YHEOceLR8_mReIozpj8cp9VIB-z84Y7bkXCPK-Jh4leiKhBm4j7FDf-KNozjLvO7--YdO_E4Znr_XM_Yz6tvDxfX1c3t9x8X5zeVbXU7V-SVxgFcD1YDOerBDdCppaRGuJYItdKtd84vB4_90KCFXgupBKL3QjfNGfty9N3ulhtytpyRcDTbFDZldRMxmH87U3g0q7g3Wreil1AMPj4bpPh7R3k2m5AtjSNOFHfZyL4bBKim7QtVHKk2xZwT-ZcxAswhEbM2JRFzSMQIaUoiRfP5qKHyhH2gZLINNFlyfx9vXAz_UT8BHo-ScQ</recordid><startdate>20230207</startdate><enddate>20230207</enddate><creator>Hasimoto, Yuh</creator><creator>Sugawa, Mitsuhiro</creator><creator>Nishiguchi, Yoshihiro</creator><creator>Aeba, Fumihiro</creator><creator>Tagawa, Ayari</creator><creator>Suga, Kenta</creator><creator>Tanaka, Nobukiyo</creator><creator>Ueno, Hiroshi</creator><creator>Yamashita, Hiroki</creator><creator>Yokota, Ryuichi</creator><creator>Masaike, Tomoko</creator><creator>Nishizaka, Takayuki</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3290-1893</orcidid></search><sort><creationdate>20230207</creationdate><title>Direct identification of the rotary angle of ATP cleavage in F1-ATPase from Bacillus PS3</title><author>Hasimoto, Yuh ; Sugawa, Mitsuhiro ; Nishiguchi, Yoshihiro ; Aeba, Fumihiro ; Tagawa, Ayari ; Suga, Kenta ; Tanaka, Nobukiyo ; Ueno, Hiroshi ; Yamashita, Hiroki ; Yokota, Ryuichi ; Masaike, Tomoko ; Nishizaka, Takayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-ef69a80d70c90ede70d8056b2e31d4eea9694fddfb8fa783ac0791261aaff1933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasimoto, Yuh</creatorcontrib><creatorcontrib>Sugawa, Mitsuhiro</creatorcontrib><creatorcontrib>Nishiguchi, Yoshihiro</creatorcontrib><creatorcontrib>Aeba, Fumihiro</creatorcontrib><creatorcontrib>Tagawa, Ayari</creatorcontrib><creatorcontrib>Suga, Kenta</creatorcontrib><creatorcontrib>Tanaka, Nobukiyo</creatorcontrib><creatorcontrib>Ueno, Hiroshi</creatorcontrib><creatorcontrib>Yamashita, Hiroki</creatorcontrib><creatorcontrib>Yokota, Ryuichi</creatorcontrib><creatorcontrib>Masaike, Tomoko</creatorcontrib><creatorcontrib>Nishizaka, Takayuki</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasimoto, Yuh</au><au>Sugawa, Mitsuhiro</au><au>Nishiguchi, Yoshihiro</au><au>Aeba, Fumihiro</au><au>Tagawa, Ayari</au><au>Suga, Kenta</au><au>Tanaka, Nobukiyo</au><au>Ueno, Hiroshi</au><au>Yamashita, Hiroki</au><au>Yokota, Ryuichi</au><au>Masaike, Tomoko</au><au>Nishizaka, Takayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct identification of the rotary angle of ATP cleavage in F1-ATPase from Bacillus PS3</atitle><jtitle>Biophysical journal</jtitle><date>2023-02-07</date><risdate>2023</risdate><volume>122</volume><issue>3</issue><spage>554</spage><epage>564</epage><pages>554-564</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>F1-ATPase is the world’s smallest biological rotary motor driven by ATP hydrolysis at three catalytic β subunits. The 120° rotational step of the central shaft γ consists of 80° substep driven by ATP binding and a subsequent 40° substep. In order to correlate timing of ATP cleavage at a specific catalytic site with a rotary angle, we designed a new F1-ATPase (F1) from thermophilic Bacillus PS3 carrying β(E190D/F414E/F420E) mutations, which cause extremely slow rates of both ATP cleavage and ATP binding. We produced an F1 molecule that consists of one mutant β and two wild-type βs (hybrid F1). As a result, the new hybrid F1 showed two pausing angles that are separated by 200°. They are attributable to two slowed reaction steps in the mutated β, thus providing the direct evidence that ATP cleavage occurs at 200° rather than 80° subsequent to ATP binding at 0°. This scenario resolves the long-standing unclarified issue in the chemomechanical coupling scheme and gives insights into the mechanism of driving unidirectional rotation. [Display omitted]</abstract><pub>Elsevier Inc</pub><pmid>36560882</pmid><doi>10.1016/j.bpj.2022.12.027</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3290-1893</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2023-02, Vol.122 (3), p.554-564
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9941720
source Elsevier ScienceDirect Journals Complete - AutoHoldings; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central
title Direct identification of the rotary angle of ATP cleavage in F1-ATPase from Bacillus PS3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20identification%20of%20the%20rotary%20angle%20of%20ATP%20cleavage%20in%20F1-ATPase%20from%20Bacillus%20PS3&rft.jtitle=Biophysical%20journal&rft.au=Hasimoto,%20Yuh&rft.date=2023-02-07&rft.volume=122&rft.issue=3&rft.spage=554&rft.epage=564&rft.pages=554-564&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2022.12.027&rft_dat=%3Cproquest_pubme%3E2758106347%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758106347&rft_id=info:pmid/36560882&rft_els_id=S0006349522039376&rfr_iscdi=true