HIC2 controls developmental hemoglobin switching by repressing BCL11A transcription

The fetal-to-adult switch in hemoglobin production is a model of developmental gene control with relevance to the treatment of hemoglobinopathies. The expression of transcription factor BCL11A, which represses fetal β-type globin ( HBG ) genes in adult erythroid cells, is predominantly controlled at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2022-09, Vol.54 (9), p.1417-1426
Hauptverfasser: Huang, Peng, Peslak, Scott A., Ren, Ren, Khandros, Eugene, Qin, Kunhua, Keller, Cheryl A., Giardine, Belinda, Bell, Henry W., Lan, Xianjiang, Sharma, Malini, Horton, John R., Abdulmalik, Osheiza, Chou, Stella T., Shi, Junwei, Crossley, Merlin, Hardison, Ross C., Cheng, Xiaodong, Blobel, Gerd A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1426
container_issue 9
container_start_page 1417
container_title Nature genetics
container_volume 54
creator Huang, Peng
Peslak, Scott A.
Ren, Ren
Khandros, Eugene
Qin, Kunhua
Keller, Cheryl A.
Giardine, Belinda
Bell, Henry W.
Lan, Xianjiang
Sharma, Malini
Horton, John R.
Abdulmalik, Osheiza
Chou, Stella T.
Shi, Junwei
Crossley, Merlin
Hardison, Ross C.
Cheng, Xiaodong
Blobel, Gerd A.
description The fetal-to-adult switch in hemoglobin production is a model of developmental gene control with relevance to the treatment of hemoglobinopathies. The expression of transcription factor BCL11A, which represses fetal β-type globin ( HBG ) genes in adult erythroid cells, is predominantly controlled at the transcriptional level but the underlying mechanism is unclear. We identify HIC2 as a repressor of BCL11A transcription. HIC2 and BCL11A are reciprocally expressed during development. Forced expression of HIC2 in adult erythroid cells inhibits BCL11A transcription and induces HBG expression. HIC2 binds to erythroid BCL11A enhancers to reduce chromatin accessibility and binding of transcription factor GATA1, diminishing enhancer activity and enhancer–promoter contacts. DNA-binding and crystallography studies reveal direct steric hindrance as one mechanism by which HIC2 inhibits GATA1 binding at a critical BCL11A enhancer. Conversely, loss of HIC2 in fetal erythroblasts increases enhancer accessibility, GATA1 binding and BCL11A transcription. HIC2 emerges as an evolutionarily conserved regulator of hemoglobin switching via developmental control of BCL11A . HIC2 regulates the fetal-to-adult hemoglobin switch. It inactivates an enhancer of the BCL11A gene, a fetal globin repressor, by reducing chromatin accessibility and displacing the transcription factor GATA1.
doi_str_mv 10.1038/s41588-022-01152-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9940634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124142473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-70f3b227b93e9247b6b55bc9893af6387e52da902103bf56246e07e1259f40393</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxa0KVCjtF-ihisSll4DH_31BoqsWkFbqoe3ZsrPOrlFip3aWim9f0wUKHDiNR_Ob53l6CH0EfAKYqtPCgCvVYkJaDMBJK96gQ-BMtCBB7dU3FtAyTMUBelfKNcbAGFZv0QHlmgEoeYh-XF4tSNOlOOc0lGblb_yQptHH2Q7Nxo9pPSQXYlP-hLnbhLhu3G2T_ZR9KXfdl8US4LyZs42ly2GaQ4rv0X5vh-I_3Ncj9Ovb15-Ly3b5_eJqcb5sOybZ3ErcU0eIdJp6TZh0wnHuOq00tb2gSnpOVlZjUs26ngvChMfSA-G6r6Y0PUJnO91p60a_6urR2Q5mymG0-dYkG8zzSQwbs043RmuGBWVV4PO9QE6_t77MZgyl88Ngo0_bYojEmAITilf0-AV6nbY5VnuGAmHAqgFaKbKjupxKyb5_PAawucvM7DIzNTPzLzMj6tKnpzYeVx5CqgDdAaWO4trn_3-_IvsXCSChbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124142473</pqid></control><display><type>article</type><title>HIC2 controls developmental hemoglobin switching by repressing BCL11A transcription</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Huang, Peng ; Peslak, Scott A. ; Ren, Ren ; Khandros, Eugene ; Qin, Kunhua ; Keller, Cheryl A. ; Giardine, Belinda ; Bell, Henry W. ; Lan, Xianjiang ; Sharma, Malini ; Horton, John R. ; Abdulmalik, Osheiza ; Chou, Stella T. ; Shi, Junwei ; Crossley, Merlin ; Hardison, Ross C. ; Cheng, Xiaodong ; Blobel, Gerd A.</creator><creatorcontrib>Huang, Peng ; Peslak, Scott A. ; Ren, Ren ; Khandros, Eugene ; Qin, Kunhua ; Keller, Cheryl A. ; Giardine, Belinda ; Bell, Henry W. ; Lan, Xianjiang ; Sharma, Malini ; Horton, John R. ; Abdulmalik, Osheiza ; Chou, Stella T. ; Shi, Junwei ; Crossley, Merlin ; Hardison, Ross C. ; Cheng, Xiaodong ; Blobel, Gerd A.</creatorcontrib><description>The fetal-to-adult switch in hemoglobin production is a model of developmental gene control with relevance to the treatment of hemoglobinopathies. The expression of transcription factor BCL11A, which represses fetal β-type globin ( HBG ) genes in adult erythroid cells, is predominantly controlled at the transcriptional level but the underlying mechanism is unclear. We identify HIC2 as a repressor of BCL11A transcription. HIC2 and BCL11A are reciprocally expressed during development. Forced expression of HIC2 in adult erythroid cells inhibits BCL11A transcription and induces HBG expression. HIC2 binds to erythroid BCL11A enhancers to reduce chromatin accessibility and binding of transcription factor GATA1, diminishing enhancer activity and enhancer–promoter contacts. DNA-binding and crystallography studies reveal direct steric hindrance as one mechanism by which HIC2 inhibits GATA1 binding at a critical BCL11A enhancer. Conversely, loss of HIC2 in fetal erythroblasts increases enhancer accessibility, GATA1 binding and BCL11A transcription. HIC2 emerges as an evolutionarily conserved regulator of hemoglobin switching via developmental control of BCL11A . HIC2 regulates the fetal-to-adult hemoglobin switch. It inactivates an enhancer of the BCL11A gene, a fetal globin repressor, by reducing chromatin accessibility and displacing the transcription factor GATA1.</description><identifier>ISSN: 1061-4036</identifier><identifier>ISSN: 1546-1718</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-022-01152-6</identifier><identifier>PMID: 35941187</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/208/200 ; 631/337/176 ; 692/699/1541 ; Accessibility ; Agriculture ; Animal Genetics and Genomics ; beta-Globins - genetics ; beta-Globins - metabolism ; Binding ; Biomedical and Life Sciences ; Biomedicine ; Blood diseases ; Cancer Research ; Carrier Proteins - genetics ; Chromatin ; CRISPR ; Crystallography ; Enhancers ; Erythroblasts ; Erythroid cells ; Erythroid Cells - metabolism ; Fetuses ; gamma-Globins - genetics ; GATA-1 protein ; Gene expression ; Gene Function ; Hemoglobin ; Hemoglobins - genetics ; Human Genetics ; Humans ; Kruppel-Like Transcription Factors - metabolism ; Proteins ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; RNA polymerase ; Steric hindrance ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Tumor Suppressor Proteins - metabolism</subject><ispartof>Nature genetics, 2022-09, Vol.54 (9), p.1417-1426</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022. corrected publication 2023. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>Copyright Nature Publishing Group Sep 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-70f3b227b93e9247b6b55bc9893af6387e52da902103bf56246e07e1259f40393</citedby><cites>FETCH-LOGICAL-c474t-70f3b227b93e9247b6b55bc9893af6387e52da902103bf56246e07e1259f40393</cites><orcidid>0000-0003-4333-6965 ; 0000-0003-4084-7516 ; 0000-0002-0714-9612 ; 0000-0003-3008-851X ; 0000-0001-8458-4995 ; 0000-0003-2057-3642 ; 0000-0001-6594-0245 ; 0000-0003-4677-8208 ; 0000-0003-2497-4291 ; 0000-0003-1483-1545 ; 0000-0002-8427-6316 ; 0000-0002-4681-1074 ; 0000-0002-6967-6362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35941187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Peng</creatorcontrib><creatorcontrib>Peslak, Scott A.</creatorcontrib><creatorcontrib>Ren, Ren</creatorcontrib><creatorcontrib>Khandros, Eugene</creatorcontrib><creatorcontrib>Qin, Kunhua</creatorcontrib><creatorcontrib>Keller, Cheryl A.</creatorcontrib><creatorcontrib>Giardine, Belinda</creatorcontrib><creatorcontrib>Bell, Henry W.</creatorcontrib><creatorcontrib>Lan, Xianjiang</creatorcontrib><creatorcontrib>Sharma, Malini</creatorcontrib><creatorcontrib>Horton, John R.</creatorcontrib><creatorcontrib>Abdulmalik, Osheiza</creatorcontrib><creatorcontrib>Chou, Stella T.</creatorcontrib><creatorcontrib>Shi, Junwei</creatorcontrib><creatorcontrib>Crossley, Merlin</creatorcontrib><creatorcontrib>Hardison, Ross C.</creatorcontrib><creatorcontrib>Cheng, Xiaodong</creatorcontrib><creatorcontrib>Blobel, Gerd A.</creatorcontrib><title>HIC2 controls developmental hemoglobin switching by repressing BCL11A transcription</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>The fetal-to-adult switch in hemoglobin production is a model of developmental gene control with relevance to the treatment of hemoglobinopathies. The expression of transcription factor BCL11A, which represses fetal β-type globin ( HBG ) genes in adult erythroid cells, is predominantly controlled at the transcriptional level but the underlying mechanism is unclear. We identify HIC2 as a repressor of BCL11A transcription. HIC2 and BCL11A are reciprocally expressed during development. Forced expression of HIC2 in adult erythroid cells inhibits BCL11A transcription and induces HBG expression. HIC2 binds to erythroid BCL11A enhancers to reduce chromatin accessibility and binding of transcription factor GATA1, diminishing enhancer activity and enhancer–promoter contacts. DNA-binding and crystallography studies reveal direct steric hindrance as one mechanism by which HIC2 inhibits GATA1 binding at a critical BCL11A enhancer. Conversely, loss of HIC2 in fetal erythroblasts increases enhancer accessibility, GATA1 binding and BCL11A transcription. HIC2 emerges as an evolutionarily conserved regulator of hemoglobin switching via developmental control of BCL11A . HIC2 regulates the fetal-to-adult hemoglobin switch. It inactivates an enhancer of the BCL11A gene, a fetal globin repressor, by reducing chromatin accessibility and displacing the transcription factor GATA1.</description><subject>631/208/200</subject><subject>631/337/176</subject><subject>692/699/1541</subject><subject>Accessibility</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>beta-Globins - genetics</subject><subject>beta-Globins - metabolism</subject><subject>Binding</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood diseases</subject><subject>Cancer Research</subject><subject>Carrier Proteins - genetics</subject><subject>Chromatin</subject><subject>CRISPR</subject><subject>Crystallography</subject><subject>Enhancers</subject><subject>Erythroblasts</subject><subject>Erythroid cells</subject><subject>Erythroid Cells - metabolism</subject><subject>Fetuses</subject><subject>gamma-Globins - genetics</subject><subject>GATA-1 protein</subject><subject>Gene expression</subject><subject>Gene Function</subject><subject>Hemoglobin</subject><subject>Hemoglobins - genetics</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Kruppel-Like Transcription Factors - metabolism</subject><subject>Proteins</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>RNA polymerase</subject><subject>Steric hindrance</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Tumor Suppressor Proteins - metabolism</subject><issn>1061-4036</issn><issn>1546-1718</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU9P3DAQxa0KVCjtF-ihisSll4DH_31BoqsWkFbqoe3ZsrPOrlFip3aWim9f0wUKHDiNR_Ob53l6CH0EfAKYqtPCgCvVYkJaDMBJK96gQ-BMtCBB7dU3FtAyTMUBelfKNcbAGFZv0QHlmgEoeYh-XF4tSNOlOOc0lGblb_yQptHH2Q7Nxo9pPSQXYlP-hLnbhLhu3G2T_ZR9KXfdl8US4LyZs42ly2GaQ4rv0X5vh-I_3Ncj9Ovb15-Ly3b5_eJqcb5sOybZ3ErcU0eIdJp6TZh0wnHuOq00tb2gSnpOVlZjUs26ngvChMfSA-G6r6Y0PUJnO91p60a_6urR2Q5mymG0-dYkG8zzSQwbs043RmuGBWVV4PO9QE6_t77MZgyl88Ngo0_bYojEmAITilf0-AV6nbY5VnuGAmHAqgFaKbKjupxKyb5_PAawucvM7DIzNTPzLzMj6tKnpzYeVx5CqgDdAaWO4trn_3-_IvsXCSChbQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Huang, Peng</creator><creator>Peslak, Scott A.</creator><creator>Ren, Ren</creator><creator>Khandros, Eugene</creator><creator>Qin, Kunhua</creator><creator>Keller, Cheryl A.</creator><creator>Giardine, Belinda</creator><creator>Bell, Henry W.</creator><creator>Lan, Xianjiang</creator><creator>Sharma, Malini</creator><creator>Horton, John R.</creator><creator>Abdulmalik, Osheiza</creator><creator>Chou, Stella T.</creator><creator>Shi, Junwei</creator><creator>Crossley, Merlin</creator><creator>Hardison, Ross C.</creator><creator>Cheng, Xiaodong</creator><creator>Blobel, Gerd A.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4333-6965</orcidid><orcidid>https://orcid.org/0000-0003-4084-7516</orcidid><orcidid>https://orcid.org/0000-0002-0714-9612</orcidid><orcidid>https://orcid.org/0000-0003-3008-851X</orcidid><orcidid>https://orcid.org/0000-0001-8458-4995</orcidid><orcidid>https://orcid.org/0000-0003-2057-3642</orcidid><orcidid>https://orcid.org/0000-0001-6594-0245</orcidid><orcidid>https://orcid.org/0000-0003-4677-8208</orcidid><orcidid>https://orcid.org/0000-0003-2497-4291</orcidid><orcidid>https://orcid.org/0000-0003-1483-1545</orcidid><orcidid>https://orcid.org/0000-0002-8427-6316</orcidid><orcidid>https://orcid.org/0000-0002-4681-1074</orcidid><orcidid>https://orcid.org/0000-0002-6967-6362</orcidid></search><sort><creationdate>20220901</creationdate><title>HIC2 controls developmental hemoglobin switching by repressing BCL11A transcription</title><author>Huang, Peng ; Peslak, Scott A. ; Ren, Ren ; Khandros, Eugene ; Qin, Kunhua ; Keller, Cheryl A. ; Giardine, Belinda ; Bell, Henry W. ; Lan, Xianjiang ; Sharma, Malini ; Horton, John R. ; Abdulmalik, Osheiza ; Chou, Stella T. ; Shi, Junwei ; Crossley, Merlin ; Hardison, Ross C. ; Cheng, Xiaodong ; Blobel, Gerd A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-70f3b227b93e9247b6b55bc9893af6387e52da902103bf56246e07e1259f40393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/208/200</topic><topic>631/337/176</topic><topic>692/699/1541</topic><topic>Accessibility</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>beta-Globins - genetics</topic><topic>beta-Globins - metabolism</topic><topic>Binding</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood diseases</topic><topic>Cancer Research</topic><topic>Carrier Proteins - genetics</topic><topic>Chromatin</topic><topic>CRISPR</topic><topic>Crystallography</topic><topic>Enhancers</topic><topic>Erythroblasts</topic><topic>Erythroid cells</topic><topic>Erythroid Cells - metabolism</topic><topic>Fetuses</topic><topic>gamma-Globins - genetics</topic><topic>GATA-1 protein</topic><topic>Gene expression</topic><topic>Gene Function</topic><topic>Hemoglobin</topic><topic>Hemoglobins - genetics</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Kruppel-Like Transcription Factors - metabolism</topic><topic>Proteins</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>RNA polymerase</topic><topic>Steric hindrance</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Tumor Suppressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Peng</creatorcontrib><creatorcontrib>Peslak, Scott A.</creatorcontrib><creatorcontrib>Ren, Ren</creatorcontrib><creatorcontrib>Khandros, Eugene</creatorcontrib><creatorcontrib>Qin, Kunhua</creatorcontrib><creatorcontrib>Keller, Cheryl A.</creatorcontrib><creatorcontrib>Giardine, Belinda</creatorcontrib><creatorcontrib>Bell, Henry W.</creatorcontrib><creatorcontrib>Lan, Xianjiang</creatorcontrib><creatorcontrib>Sharma, Malini</creatorcontrib><creatorcontrib>Horton, John R.</creatorcontrib><creatorcontrib>Abdulmalik, Osheiza</creatorcontrib><creatorcontrib>Chou, Stella T.</creatorcontrib><creatorcontrib>Shi, Junwei</creatorcontrib><creatorcontrib>Crossley, Merlin</creatorcontrib><creatorcontrib>Hardison, Ross C.</creatorcontrib><creatorcontrib>Cheng, Xiaodong</creatorcontrib><creatorcontrib>Blobel, Gerd A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Peng</au><au>Peslak, Scott A.</au><au>Ren, Ren</au><au>Khandros, Eugene</au><au>Qin, Kunhua</au><au>Keller, Cheryl A.</au><au>Giardine, Belinda</au><au>Bell, Henry W.</au><au>Lan, Xianjiang</au><au>Sharma, Malini</au><au>Horton, John R.</au><au>Abdulmalik, Osheiza</au><au>Chou, Stella T.</au><au>Shi, Junwei</au><au>Crossley, Merlin</au><au>Hardison, Ross C.</au><au>Cheng, Xiaodong</au><au>Blobel, Gerd A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HIC2 controls developmental hemoglobin switching by repressing BCL11A transcription</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>54</volume><issue>9</issue><spage>1417</spage><epage>1426</epage><pages>1417-1426</pages><issn>1061-4036</issn><issn>1546-1718</issn><eissn>1546-1718</eissn><abstract>The fetal-to-adult switch in hemoglobin production is a model of developmental gene control with relevance to the treatment of hemoglobinopathies. The expression of transcription factor BCL11A, which represses fetal β-type globin ( HBG ) genes in adult erythroid cells, is predominantly controlled at the transcriptional level but the underlying mechanism is unclear. We identify HIC2 as a repressor of BCL11A transcription. HIC2 and BCL11A are reciprocally expressed during development. Forced expression of HIC2 in adult erythroid cells inhibits BCL11A transcription and induces HBG expression. HIC2 binds to erythroid BCL11A enhancers to reduce chromatin accessibility and binding of transcription factor GATA1, diminishing enhancer activity and enhancer–promoter contacts. DNA-binding and crystallography studies reveal direct steric hindrance as one mechanism by which HIC2 inhibits GATA1 binding at a critical BCL11A enhancer. Conversely, loss of HIC2 in fetal erythroblasts increases enhancer accessibility, GATA1 binding and BCL11A transcription. HIC2 emerges as an evolutionarily conserved regulator of hemoglobin switching via developmental control of BCL11A . HIC2 regulates the fetal-to-adult hemoglobin switch. It inactivates an enhancer of the BCL11A gene, a fetal globin repressor, by reducing chromatin accessibility and displacing the transcription factor GATA1.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>35941187</pmid><doi>10.1038/s41588-022-01152-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4333-6965</orcidid><orcidid>https://orcid.org/0000-0003-4084-7516</orcidid><orcidid>https://orcid.org/0000-0002-0714-9612</orcidid><orcidid>https://orcid.org/0000-0003-3008-851X</orcidid><orcidid>https://orcid.org/0000-0001-8458-4995</orcidid><orcidid>https://orcid.org/0000-0003-2057-3642</orcidid><orcidid>https://orcid.org/0000-0001-6594-0245</orcidid><orcidid>https://orcid.org/0000-0003-4677-8208</orcidid><orcidid>https://orcid.org/0000-0003-2497-4291</orcidid><orcidid>https://orcid.org/0000-0003-1483-1545</orcidid><orcidid>https://orcid.org/0000-0002-8427-6316</orcidid><orcidid>https://orcid.org/0000-0002-4681-1074</orcidid><orcidid>https://orcid.org/0000-0002-6967-6362</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2022-09, Vol.54 (9), p.1417-1426
issn 1061-4036
1546-1718
1546-1718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9940634
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/208/200
631/337/176
692/699/1541
Accessibility
Agriculture
Animal Genetics and Genomics
beta-Globins - genetics
beta-Globins - metabolism
Binding
Biomedical and Life Sciences
Biomedicine
Blood diseases
Cancer Research
Carrier Proteins - genetics
Chromatin
CRISPR
Crystallography
Enhancers
Erythroblasts
Erythroid cells
Erythroid Cells - metabolism
Fetuses
gamma-Globins - genetics
GATA-1 protein
Gene expression
Gene Function
Hemoglobin
Hemoglobins - genetics
Human Genetics
Humans
Kruppel-Like Transcription Factors - metabolism
Proteins
Repressor Proteins - genetics
Repressor Proteins - metabolism
RNA polymerase
Steric hindrance
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
Tumor Suppressor Proteins - metabolism
title HIC2 controls developmental hemoglobin switching by repressing BCL11A transcription
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A58%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HIC2%20controls%20developmental%20hemoglobin%20switching%20by%20repressing%20BCL11A%20transcription&rft.jtitle=Nature%20genetics&rft.au=Huang,%20Peng&rft.date=2022-09-01&rft.volume=54&rft.issue=9&rft.spage=1417&rft.epage=1426&rft.pages=1417-1426&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-022-01152-6&rft_dat=%3Cproquest_pubme%3E3124142473%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124142473&rft_id=info:pmid/35941187&rfr_iscdi=true