Multimodal representation learning for predicting molecule-disease relations
Predicting molecule-disease indications and side effects is important for drug development and pharmacovigilance. Comprehensively mining molecule-molecule, molecule-disease and disease-disease semantic dependencies can potentially improve prediction performance. We introduce a Multi-Modal REpresenta...
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2023-02, Vol.39 (2) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Bioinformatics (Oxford, England) |
container_volume | 39 |
creator | Wen, Jun Zhang, Xiang Rush, Everett Panickan, Vidul A Li, Xingyu Cai, Tianrun Zhou, Doudou Ho, Yuk-Lam Costa, Lauren Begoli, Edmon Hong, Chuan Gaziano, J Michael Cho, Kelly Lu, Junwei Liao, Katherine P Zitnik, Marinka Cai, Tianxi |
description | Predicting molecule-disease indications and side effects is important for drug development and pharmacovigilance. Comprehensively mining molecule-molecule, molecule-disease and disease-disease semantic dependencies can potentially improve prediction performance.
We introduce a Multi-Modal REpresentation Mapping Approach to Predicting molecular-disease relations (M2REMAP) by incorporating clinical semantics learned from electronic health records (EHR) of 12.6 million patients. Specifically, M2REMAP first learns a multimodal molecule representation that synthesizes chemical property and clinical semantic information by mapping molecule chemicals via a deep neural network onto the clinical semantic embedding space shared by drugs, diseases and other common clinical concepts. To infer molecule-disease relations, M2REMAP combines multimodal molecule representation and disease semantic embedding to jointly infer indications and side effects.
We extensively evaluate M2REMAP on molecule indications, side effects and interactions. Results show that incorporating EHR embeddings improves performance significantly, for example, attaining an improvement over the baseline models by 23.6% in PRC-AUC on indications and 23.9% on side effects. Further, M2REMAP overcomes the limitation of existing methods and effectively predicts drugs for novel diseases and emerging pathogens.
The code is available at https://github.com/celehs/M2REMAP, and prediction results are provided at https://shiny.parse-health.org/drugs-diseases-dev/.
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btad085 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9940625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2778973834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-7d2c657b56dfeb586733d37cbeb74de94be45bd63a92a983237edf1da6760f993</originalsourceid><addsrcrecordid>eNpVUVtLHTEQDqLUS_sX5OCTL6vJZpNsXoQithaO-GKfQy6zGskmp0m24L9v9JyKPs0M811m-BA6JfiCYEkvjU8-TinPunpbLk3VDo9sDx0RykU3jITsf-gP0XEpzxhjhhn_gg4pH1vT0yO0vltC9XNyOqwybDIUiLVpprgKoHP08XHVbFZt47ytr-OcAtglQOd8AV2g8cIbo3xFB5MOBb7t6gn6_ePm4fq2W9___HX9fd3ZYSC1E663nAnDuJvAsJELSh0V1oARgwM5GBiYcZxq2Ws50p4KcBNxmguOJynpCbra6m4WM4Oz7eSsg9pkP-v8opL26vMm-if1mP4qKQfMe9YEzrYCqVSvivUV7JNNMYKtikjO-jfQ-c4lpz8LlKpmXyyEoCOkpaheiFEKOtKhQfkWanMqJcP0fgvB6jUv9TkvtcurEU8_fvJO-x8Q_QdYc5p_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778973834</pqid></control><display><type>article</type><title>Multimodal representation learning for predicting molecule-disease relations</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wen, Jun ; Zhang, Xiang ; Rush, Everett ; Panickan, Vidul A ; Li, Xingyu ; Cai, Tianrun ; Zhou, Doudou ; Ho, Yuk-Lam ; Costa, Lauren ; Begoli, Edmon ; Hong, Chuan ; Gaziano, J Michael ; Cho, Kelly ; Lu, Junwei ; Liao, Katherine P ; Zitnik, Marinka ; Cai, Tianxi</creator><contributor>Lu, Zhiyong</contributor><creatorcontrib>Wen, Jun ; Zhang, Xiang ; Rush, Everett ; Panickan, Vidul A ; Li, Xingyu ; Cai, Tianrun ; Zhou, Doudou ; Ho, Yuk-Lam ; Costa, Lauren ; Begoli, Edmon ; Hong, Chuan ; Gaziano, J Michael ; Cho, Kelly ; Lu, Junwei ; Liao, Katherine P ; Zitnik, Marinka ; Cai, Tianxi ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Lu, Zhiyong</creatorcontrib><description>Predicting molecule-disease indications and side effects is important for drug development and pharmacovigilance. Comprehensively mining molecule-molecule, molecule-disease and disease-disease semantic dependencies can potentially improve prediction performance.
We introduce a Multi-Modal REpresentation Mapping Approach to Predicting molecular-disease relations (M2REMAP) by incorporating clinical semantics learned from electronic health records (EHR) of 12.6 million patients. Specifically, M2REMAP first learns a multimodal molecule representation that synthesizes chemical property and clinical semantic information by mapping molecule chemicals via a deep neural network onto the clinical semantic embedding space shared by drugs, diseases and other common clinical concepts. To infer molecule-disease relations, M2REMAP combines multimodal molecule representation and disease semantic embedding to jointly infer indications and side effects.
We extensively evaluate M2REMAP on molecule indications, side effects and interactions. Results show that incorporating EHR embeddings improves performance significantly, for example, attaining an improvement over the baseline models by 23.6% in PRC-AUC on indications and 23.9% on side effects. Further, M2REMAP overcomes the limitation of existing methods and effectively predicts drugs for novel diseases and emerging pathogens.
The code is available at https://github.com/celehs/M2REMAP, and prediction results are provided at https://shiny.parse-health.org/drugs-diseases-dev/.
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4811</identifier><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btad085</identifier><identifier>PMID: 36805623</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Drug Development ; Drug-Related Side Effects and Adverse Reactions ; Electronic Health Records ; Humans ; Neural Networks, Computer ; Original Paper ; Pharmacovigilance</subject><ispartof>Bioinformatics (Oxford, England), 2023-02, Vol.39 (2)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press.</rights><rights>The Author(s) 2023. Published by Oxford University Press. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-7d2c657b56dfeb586733d37cbeb74de94be45bd63a92a983237edf1da6760f993</citedby><cites>FETCH-LOGICAL-c441t-7d2c657b56dfeb586733d37cbeb74de94be45bd63a92a983237edf1da6760f993</cites><orcidid>0000-0003-1727-7076 ; 0000-0002-5379-2502 ; 0000-0001-5067-2647 ; 0000-0001-8530-7228 ; 0000000256325723 ; 0000000150672647 ; 0000000221733663 ; 0000000253792502 ; 0000000185307228 ; 0000000317277076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9940625/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9940625/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36805623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1965225$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Lu, Zhiyong</contributor><creatorcontrib>Wen, Jun</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Rush, Everett</creatorcontrib><creatorcontrib>Panickan, Vidul A</creatorcontrib><creatorcontrib>Li, Xingyu</creatorcontrib><creatorcontrib>Cai, Tianrun</creatorcontrib><creatorcontrib>Zhou, Doudou</creatorcontrib><creatorcontrib>Ho, Yuk-Lam</creatorcontrib><creatorcontrib>Costa, Lauren</creatorcontrib><creatorcontrib>Begoli, Edmon</creatorcontrib><creatorcontrib>Hong, Chuan</creatorcontrib><creatorcontrib>Gaziano, J Michael</creatorcontrib><creatorcontrib>Cho, Kelly</creatorcontrib><creatorcontrib>Lu, Junwei</creatorcontrib><creatorcontrib>Liao, Katherine P</creatorcontrib><creatorcontrib>Zitnik, Marinka</creatorcontrib><creatorcontrib>Cai, Tianxi</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Multimodal representation learning for predicting molecule-disease relations</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Predicting molecule-disease indications and side effects is important for drug development and pharmacovigilance. Comprehensively mining molecule-molecule, molecule-disease and disease-disease semantic dependencies can potentially improve prediction performance.
We introduce a Multi-Modal REpresentation Mapping Approach to Predicting molecular-disease relations (M2REMAP) by incorporating clinical semantics learned from electronic health records (EHR) of 12.6 million patients. Specifically, M2REMAP first learns a multimodal molecule representation that synthesizes chemical property and clinical semantic information by mapping molecule chemicals via a deep neural network onto the clinical semantic embedding space shared by drugs, diseases and other common clinical concepts. To infer molecule-disease relations, M2REMAP combines multimodal molecule representation and disease semantic embedding to jointly infer indications and side effects.
We extensively evaluate M2REMAP on molecule indications, side effects and interactions. Results show that incorporating EHR embeddings improves performance significantly, for example, attaining an improvement over the baseline models by 23.6% in PRC-AUC on indications and 23.9% on side effects. Further, M2REMAP overcomes the limitation of existing methods and effectively predicts drugs for novel diseases and emerging pathogens.
The code is available at https://github.com/celehs/M2REMAP, and prediction results are provided at https://shiny.parse-health.org/drugs-diseases-dev/.
Supplementary data are available at Bioinformatics online.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Drug Development</subject><subject>Drug-Related Side Effects and Adverse Reactions</subject><subject>Electronic Health Records</subject><subject>Humans</subject><subject>Neural Networks, Computer</subject><subject>Original Paper</subject><subject>Pharmacovigilance</subject><issn>1367-4811</issn><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUVtLHTEQDqLUS_sX5OCTL6vJZpNsXoQithaO-GKfQy6zGskmp0m24L9v9JyKPs0M811m-BA6JfiCYEkvjU8-TinPunpbLk3VDo9sDx0RykU3jITsf-gP0XEpzxhjhhn_gg4pH1vT0yO0vltC9XNyOqwybDIUiLVpprgKoHP08XHVbFZt47ytr-OcAtglQOd8AV2g8cIbo3xFB5MOBb7t6gn6_ePm4fq2W9___HX9fd3ZYSC1E663nAnDuJvAsJELSh0V1oARgwM5GBiYcZxq2Ws50p4KcBNxmguOJynpCbra6m4WM4Oz7eSsg9pkP-v8opL26vMm-if1mP4qKQfMe9YEzrYCqVSvivUV7JNNMYKtikjO-jfQ-c4lpz8LlKpmXyyEoCOkpaheiFEKOtKhQfkWanMqJcP0fgvB6jUv9TkvtcurEU8_fvJO-x8Q_QdYc5p_</recordid><startdate>20230203</startdate><enddate>20230203</enddate><creator>Wen, Jun</creator><creator>Zhang, Xiang</creator><creator>Rush, Everett</creator><creator>Panickan, Vidul A</creator><creator>Li, Xingyu</creator><creator>Cai, Tianrun</creator><creator>Zhou, Doudou</creator><creator>Ho, Yuk-Lam</creator><creator>Costa, Lauren</creator><creator>Begoli, Edmon</creator><creator>Hong, Chuan</creator><creator>Gaziano, J Michael</creator><creator>Cho, Kelly</creator><creator>Lu, Junwei</creator><creator>Liao, Katherine P</creator><creator>Zitnik, Marinka</creator><creator>Cai, Tianxi</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1727-7076</orcidid><orcidid>https://orcid.org/0000-0002-5379-2502</orcidid><orcidid>https://orcid.org/0000-0001-5067-2647</orcidid><orcidid>https://orcid.org/0000-0001-8530-7228</orcidid><orcidid>https://orcid.org/0000000256325723</orcidid><orcidid>https://orcid.org/0000000150672647</orcidid><orcidid>https://orcid.org/0000000221733663</orcidid><orcidid>https://orcid.org/0000000253792502</orcidid><orcidid>https://orcid.org/0000000185307228</orcidid><orcidid>https://orcid.org/0000000317277076</orcidid></search><sort><creationdate>20230203</creationdate><title>Multimodal representation learning for predicting molecule-disease relations</title><author>Wen, Jun ; Zhang, Xiang ; Rush, Everett ; Panickan, Vidul A ; Li, Xingyu ; Cai, Tianrun ; Zhou, Doudou ; Ho, Yuk-Lam ; Costa, Lauren ; Begoli, Edmon ; Hong, Chuan ; Gaziano, J Michael ; Cho, Kelly ; Lu, Junwei ; Liao, Katherine P ; Zitnik, Marinka ; Cai, Tianxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-7d2c657b56dfeb586733d37cbeb74de94be45bd63a92a983237edf1da6760f993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Drug Development</topic><topic>Drug-Related Side Effects and Adverse Reactions</topic><topic>Electronic Health Records</topic><topic>Humans</topic><topic>Neural Networks, Computer</topic><topic>Original Paper</topic><topic>Pharmacovigilance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Jun</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Rush, Everett</creatorcontrib><creatorcontrib>Panickan, Vidul A</creatorcontrib><creatorcontrib>Li, Xingyu</creatorcontrib><creatorcontrib>Cai, Tianrun</creatorcontrib><creatorcontrib>Zhou, Doudou</creatorcontrib><creatorcontrib>Ho, Yuk-Lam</creatorcontrib><creatorcontrib>Costa, Lauren</creatorcontrib><creatorcontrib>Begoli, Edmon</creatorcontrib><creatorcontrib>Hong, Chuan</creatorcontrib><creatorcontrib>Gaziano, J Michael</creatorcontrib><creatorcontrib>Cho, Kelly</creatorcontrib><creatorcontrib>Lu, Junwei</creatorcontrib><creatorcontrib>Liao, Katherine P</creatorcontrib><creatorcontrib>Zitnik, Marinka</creatorcontrib><creatorcontrib>Cai, Tianxi</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Jun</au><au>Zhang, Xiang</au><au>Rush, Everett</au><au>Panickan, Vidul A</au><au>Li, Xingyu</au><au>Cai, Tianrun</au><au>Zhou, Doudou</au><au>Ho, Yuk-Lam</au><au>Costa, Lauren</au><au>Begoli, Edmon</au><au>Hong, Chuan</au><au>Gaziano, J Michael</au><au>Cho, Kelly</au><au>Lu, Junwei</au><au>Liao, Katherine P</au><au>Zitnik, Marinka</au><au>Cai, Tianxi</au><au>Lu, Zhiyong</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal representation learning for predicting molecule-disease relations</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2023-02-03</date><risdate>2023</risdate><volume>39</volume><issue>2</issue><issn>1367-4811</issn><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Predicting molecule-disease indications and side effects is important for drug development and pharmacovigilance. Comprehensively mining molecule-molecule, molecule-disease and disease-disease semantic dependencies can potentially improve prediction performance.
We introduce a Multi-Modal REpresentation Mapping Approach to Predicting molecular-disease relations (M2REMAP) by incorporating clinical semantics learned from electronic health records (EHR) of 12.6 million patients. Specifically, M2REMAP first learns a multimodal molecule representation that synthesizes chemical property and clinical semantic information by mapping molecule chemicals via a deep neural network onto the clinical semantic embedding space shared by drugs, diseases and other common clinical concepts. To infer molecule-disease relations, M2REMAP combines multimodal molecule representation and disease semantic embedding to jointly infer indications and side effects.
We extensively evaluate M2REMAP on molecule indications, side effects and interactions. Results show that incorporating EHR embeddings improves performance significantly, for example, attaining an improvement over the baseline models by 23.6% in PRC-AUC on indications and 23.9% on side effects. Further, M2REMAP overcomes the limitation of existing methods and effectively predicts drugs for novel diseases and emerging pathogens.
The code is available at https://github.com/celehs/M2REMAP, and prediction results are provided at https://shiny.parse-health.org/drugs-diseases-dev/.
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>36805623</pmid><doi>10.1093/bioinformatics/btad085</doi><orcidid>https://orcid.org/0000-0003-1727-7076</orcidid><orcidid>https://orcid.org/0000-0002-5379-2502</orcidid><orcidid>https://orcid.org/0000-0001-5067-2647</orcidid><orcidid>https://orcid.org/0000-0001-8530-7228</orcidid><orcidid>https://orcid.org/0000000256325723</orcidid><orcidid>https://orcid.org/0000000150672647</orcidid><orcidid>https://orcid.org/0000000221733663</orcidid><orcidid>https://orcid.org/0000000253792502</orcidid><orcidid>https://orcid.org/0000000185307228</orcidid><orcidid>https://orcid.org/0000000317277076</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4811 |
ispartof | Bioinformatics (Oxford, England), 2023-02, Vol.39 (2) |
issn | 1367-4811 1367-4803 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9940625 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | BASIC BIOLOGICAL SCIENCES Drug Development Drug-Related Side Effects and Adverse Reactions Electronic Health Records Humans Neural Networks, Computer Original Paper Pharmacovigilance |
title | Multimodal representation learning for predicting molecule-disease relations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A59%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20representation%20learning%20for%20predicting%20molecule-disease%20relations&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Wen,%20Jun&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2023-02-03&rft.volume=39&rft.issue=2&rft.issn=1367-4811&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btad085&rft_dat=%3Cproquest_pubme%3E2778973834%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778973834&rft_id=info:pmid/36805623&rfr_iscdi=true |