Emu: Species-Level Microbial Community Profiling for Full-Length Nanopore 16S Reads

16S rRNA based analysis is the established standard for elucidating microbial community composition. While short read 16S analyses are largely confined to genus-level resolution at best since only a portion of the gene is sequenced, full-length 16S sequences have the potential to provide species-lev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2022-06, Vol.19 (7), p.845-853
Hauptverfasser: Curry, Kristen D., Wang, Qi, Nute, Michael G., Tyshaieva, Alona, Reeves, Elizabeth, Soriano, Sirena, Wu, Qinglong, Graeber, Enid, Finzer, Patrick, Mendling, Werner, Savidge, Tor, Villapol, Sonia, Dilthey, Alexander, Treangen, Todd J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 853
container_issue 7
container_start_page 845
container_title Nature methods
container_volume 19
creator Curry, Kristen D.
Wang, Qi
Nute, Michael G.
Tyshaieva, Alona
Reeves, Elizabeth
Soriano, Sirena
Wu, Qinglong
Graeber, Enid
Finzer, Patrick
Mendling, Werner
Savidge, Tor
Villapol, Sonia
Dilthey, Alexander
Treangen, Todd J.
description 16S rRNA based analysis is the established standard for elucidating microbial community composition. While short read 16S analyses are largely confined to genus-level resolution at best since only a portion of the gene is sequenced, full-length 16S sequences have the potential to provide species-level accuracy. However, existing taxonomic identification algorithms are not optimized for the increased read length and error rate often observed in long-read data. Here we present Emu, a novel approach that employs an expectation-maximization (EM) algorithm to generate taxonomic abundance profiles from full-length 16S rRNA reads. Results produced from two simulated datasets and two mock communities show Emu capable of accurate microbial community profiling while obtaining fewer false positives and false negatives than alternative methods. Additionally, we illustrate a real-world application of our new software by comparing clinical sample composition estimates generated by an established whole-genome shotgun sequencing workflow to those returned by full-length 16S sequences processed with Emu.
doi_str_mv 10.1038/s41592-022-01520-4
format Article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9939874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_9939874</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_99398743</originalsourceid><addsrcrecordid>eNqljLtOwzAYhS0Eoi3wAkz_Cxh8JTEDS9WqA6CKsFtu6qRGvkR2UqlvTwcYmBmOziedTwehe0oeKOH1YxFUKoYJO4dKRrC4QHMqRY0rSuTlLxNFZ2hRyhchnAsmr9GMy6rikrM5alZheoZmsK2zBb_ao_Xw5tqcds54WKYQpujGE2xz6px3sYcuZVhP3p_l2I8HeDcxDSlboE8NfFizL7foqjO-2LufvkEv69XncoOHaRfsvrVxzMbrIbtg8kkn4_TfJbqD7tNRK8VVXQn-74NvvgperQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Emu: Species-Level Microbial Community Profiling for Full-Length Nanopore 16S Reads</title><source>SpringerLink Journals</source><source>Nature</source><creator>Curry, Kristen D. ; Wang, Qi ; Nute, Michael G. ; Tyshaieva, Alona ; Reeves, Elizabeth ; Soriano, Sirena ; Wu, Qinglong ; Graeber, Enid ; Finzer, Patrick ; Mendling, Werner ; Savidge, Tor ; Villapol, Sonia ; Dilthey, Alexander ; Treangen, Todd J.</creator><creatorcontrib>Curry, Kristen D. ; Wang, Qi ; Nute, Michael G. ; Tyshaieva, Alona ; Reeves, Elizabeth ; Soriano, Sirena ; Wu, Qinglong ; Graeber, Enid ; Finzer, Patrick ; Mendling, Werner ; Savidge, Tor ; Villapol, Sonia ; Dilthey, Alexander ; Treangen, Todd J.</creatorcontrib><description>16S rRNA based analysis is the established standard for elucidating microbial community composition. While short read 16S analyses are largely confined to genus-level resolution at best since only a portion of the gene is sequenced, full-length 16S sequences have the potential to provide species-level accuracy. However, existing taxonomic identification algorithms are not optimized for the increased read length and error rate often observed in long-read data. Here we present Emu, a novel approach that employs an expectation-maximization (EM) algorithm to generate taxonomic abundance profiles from full-length 16S rRNA reads. Results produced from two simulated datasets and two mock communities show Emu capable of accurate microbial community profiling while obtaining fewer false positives and false negatives than alternative methods. Additionally, we illustrate a real-world application of our new software by comparing clinical sample composition estimates generated by an established whole-genome shotgun sequencing workflow to those returned by full-length 16S sequences processed with Emu.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-022-01520-4</identifier><identifier>PMID: 35773532</identifier><language>eng</language><ispartof>Nature methods, 2022-06, Vol.19 (7), p.845-853</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids></links><search><creatorcontrib>Curry, Kristen D.</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Nute, Michael G.</creatorcontrib><creatorcontrib>Tyshaieva, Alona</creatorcontrib><creatorcontrib>Reeves, Elizabeth</creatorcontrib><creatorcontrib>Soriano, Sirena</creatorcontrib><creatorcontrib>Wu, Qinglong</creatorcontrib><creatorcontrib>Graeber, Enid</creatorcontrib><creatorcontrib>Finzer, Patrick</creatorcontrib><creatorcontrib>Mendling, Werner</creatorcontrib><creatorcontrib>Savidge, Tor</creatorcontrib><creatorcontrib>Villapol, Sonia</creatorcontrib><creatorcontrib>Dilthey, Alexander</creatorcontrib><creatorcontrib>Treangen, Todd J.</creatorcontrib><title>Emu: Species-Level Microbial Community Profiling for Full-Length Nanopore 16S Reads</title><title>Nature methods</title><description>16S rRNA based analysis is the established standard for elucidating microbial community composition. While short read 16S analyses are largely confined to genus-level resolution at best since only a portion of the gene is sequenced, full-length 16S sequences have the potential to provide species-level accuracy. However, existing taxonomic identification algorithms are not optimized for the increased read length and error rate often observed in long-read data. Here we present Emu, a novel approach that employs an expectation-maximization (EM) algorithm to generate taxonomic abundance profiles from full-length 16S rRNA reads. Results produced from two simulated datasets and two mock communities show Emu capable of accurate microbial community profiling while obtaining fewer false positives and false negatives than alternative methods. Additionally, we illustrate a real-world application of our new software by comparing clinical sample composition estimates generated by an established whole-genome shotgun sequencing workflow to those returned by full-length 16S sequences processed with Emu.</description><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqljLtOwzAYhS0Eoi3wAkz_Cxh8JTEDS9WqA6CKsFtu6qRGvkR2UqlvTwcYmBmOziedTwehe0oeKOH1YxFUKoYJO4dKRrC4QHMqRY0rSuTlLxNFZ2hRyhchnAsmr9GMy6rikrM5alZheoZmsK2zBb_ao_Xw5tqcds54WKYQpujGE2xz6px3sYcuZVhP3p_l2I8HeDcxDSlboE8NfFizL7foqjO-2LufvkEv69XncoOHaRfsvrVxzMbrIbtg8kkn4_TfJbqD7tNRK8VVXQn-74NvvgperQ</recordid><startdate>20220630</startdate><enddate>20220630</enddate><creator>Curry, Kristen D.</creator><creator>Wang, Qi</creator><creator>Nute, Michael G.</creator><creator>Tyshaieva, Alona</creator><creator>Reeves, Elizabeth</creator><creator>Soriano, Sirena</creator><creator>Wu, Qinglong</creator><creator>Graeber, Enid</creator><creator>Finzer, Patrick</creator><creator>Mendling, Werner</creator><creator>Savidge, Tor</creator><creator>Villapol, Sonia</creator><creator>Dilthey, Alexander</creator><creator>Treangen, Todd J.</creator><scope>5PM</scope></search><sort><creationdate>20220630</creationdate><title>Emu: Species-Level Microbial Community Profiling for Full-Length Nanopore 16S Reads</title><author>Curry, Kristen D. ; Wang, Qi ; Nute, Michael G. ; Tyshaieva, Alona ; Reeves, Elizabeth ; Soriano, Sirena ; Wu, Qinglong ; Graeber, Enid ; Finzer, Patrick ; Mendling, Werner ; Savidge, Tor ; Villapol, Sonia ; Dilthey, Alexander ; Treangen, Todd J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_99398743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curry, Kristen D.</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Nute, Michael G.</creatorcontrib><creatorcontrib>Tyshaieva, Alona</creatorcontrib><creatorcontrib>Reeves, Elizabeth</creatorcontrib><creatorcontrib>Soriano, Sirena</creatorcontrib><creatorcontrib>Wu, Qinglong</creatorcontrib><creatorcontrib>Graeber, Enid</creatorcontrib><creatorcontrib>Finzer, Patrick</creatorcontrib><creatorcontrib>Mendling, Werner</creatorcontrib><creatorcontrib>Savidge, Tor</creatorcontrib><creatorcontrib>Villapol, Sonia</creatorcontrib><creatorcontrib>Dilthey, Alexander</creatorcontrib><creatorcontrib>Treangen, Todd J.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curry, Kristen D.</au><au>Wang, Qi</au><au>Nute, Michael G.</au><au>Tyshaieva, Alona</au><au>Reeves, Elizabeth</au><au>Soriano, Sirena</au><au>Wu, Qinglong</au><au>Graeber, Enid</au><au>Finzer, Patrick</au><au>Mendling, Werner</au><au>Savidge, Tor</au><au>Villapol, Sonia</au><au>Dilthey, Alexander</au><au>Treangen, Todd J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emu: Species-Level Microbial Community Profiling for Full-Length Nanopore 16S Reads</atitle><jtitle>Nature methods</jtitle><date>2022-06-30</date><risdate>2022</risdate><volume>19</volume><issue>7</issue><spage>845</spage><epage>853</epage><pages>845-853</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>16S rRNA based analysis is the established standard for elucidating microbial community composition. While short read 16S analyses are largely confined to genus-level resolution at best since only a portion of the gene is sequenced, full-length 16S sequences have the potential to provide species-level accuracy. However, existing taxonomic identification algorithms are not optimized for the increased read length and error rate often observed in long-read data. Here we present Emu, a novel approach that employs an expectation-maximization (EM) algorithm to generate taxonomic abundance profiles from full-length 16S rRNA reads. Results produced from two simulated datasets and two mock communities show Emu capable of accurate microbial community profiling while obtaining fewer false positives and false negatives than alternative methods. Additionally, we illustrate a real-world application of our new software by comparing clinical sample composition estimates generated by an established whole-genome shotgun sequencing workflow to those returned by full-length 16S sequences processed with Emu.</abstract><pmid>35773532</pmid><doi>10.1038/s41592-022-01520-4</doi></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2022-06, Vol.19 (7), p.845-853
issn 1548-7091
1548-7105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9939874
source SpringerLink Journals; Nature
title Emu: Species-Level Microbial Community Profiling for Full-Length Nanopore 16S Reads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emu:%20Species-Level%20Microbial%20Community%20Profiling%20for%20Full-Length%20Nanopore%2016S%20Reads&rft.jtitle=Nature%20methods&rft.au=Curry,%20Kristen%20D.&rft.date=2022-06-30&rft.volume=19&rft.issue=7&rft.spage=845&rft.epage=853&rft.pages=845-853&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-022-01520-4&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_9939874%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35773532&rfr_iscdi=true