Emu: Species-Level Microbial Community Profiling for Full-Length Nanopore 16S Reads
16S rRNA based analysis is the established standard for elucidating microbial community composition. While short read 16S analyses are largely confined to genus-level resolution at best since only a portion of the gene is sequenced, full-length 16S sequences have the potential to provide species-lev...
Gespeichert in:
Veröffentlicht in: | Nature methods 2022-06, Vol.19 (7), p.845-853 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 853 |
---|---|
container_issue | 7 |
container_start_page | 845 |
container_title | Nature methods |
container_volume | 19 |
creator | Curry, Kristen D. Wang, Qi Nute, Michael G. Tyshaieva, Alona Reeves, Elizabeth Soriano, Sirena Wu, Qinglong Graeber, Enid Finzer, Patrick Mendling, Werner Savidge, Tor Villapol, Sonia Dilthey, Alexander Treangen, Todd J. |
description | 16S rRNA based analysis is the established standard for elucidating microbial community composition. While short read 16S analyses are largely confined to genus-level resolution at best since only a portion of the gene is sequenced, full-length 16S sequences have the potential to provide species-level accuracy. However, existing taxonomic identification algorithms are not optimized for the increased read length and error rate often observed in long-read data. Here we present Emu, a novel approach that employs an expectation-maximization (EM) algorithm to generate taxonomic abundance profiles from full-length 16S rRNA reads. Results produced from two simulated datasets and two mock communities show Emu capable of accurate microbial community profiling while obtaining fewer false positives and false negatives than alternative methods. Additionally, we illustrate a real-world application of our new software by comparing clinical sample composition estimates generated by an established whole-genome shotgun sequencing workflow to those returned by full-length 16S sequences processed with Emu. |
doi_str_mv | 10.1038/s41592-022-01520-4 |
format | Article |
fullrecord | <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9939874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_9939874</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_99398743</originalsourceid><addsrcrecordid>eNqljLtOwzAYhS0Eoi3wAkz_Cxh8JTEDS9WqA6CKsFtu6qRGvkR2UqlvTwcYmBmOziedTwehe0oeKOH1YxFUKoYJO4dKRrC4QHMqRY0rSuTlLxNFZ2hRyhchnAsmr9GMy6rikrM5alZheoZmsK2zBb_ao_Xw5tqcds54WKYQpujGE2xz6px3sYcuZVhP3p_l2I8HeDcxDSlboE8NfFizL7foqjO-2LufvkEv69XncoOHaRfsvrVxzMbrIbtg8kkn4_TfJbqD7tNRK8VVXQn-74NvvgperQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Emu: Species-Level Microbial Community Profiling for Full-Length Nanopore 16S Reads</title><source>SpringerLink Journals</source><source>Nature</source><creator>Curry, Kristen D. ; Wang, Qi ; Nute, Michael G. ; Tyshaieva, Alona ; Reeves, Elizabeth ; Soriano, Sirena ; Wu, Qinglong ; Graeber, Enid ; Finzer, Patrick ; Mendling, Werner ; Savidge, Tor ; Villapol, Sonia ; Dilthey, Alexander ; Treangen, Todd J.</creator><creatorcontrib>Curry, Kristen D. ; Wang, Qi ; Nute, Michael G. ; Tyshaieva, Alona ; Reeves, Elizabeth ; Soriano, Sirena ; Wu, Qinglong ; Graeber, Enid ; Finzer, Patrick ; Mendling, Werner ; Savidge, Tor ; Villapol, Sonia ; Dilthey, Alexander ; Treangen, Todd J.</creatorcontrib><description>16S rRNA based analysis is the established standard for elucidating microbial community composition. While short read 16S analyses are largely confined to genus-level resolution at best since only a portion of the gene is sequenced, full-length 16S sequences have the potential to provide species-level accuracy. However, existing taxonomic identification algorithms are not optimized for the increased read length and error rate often observed in long-read data. Here we present Emu, a novel approach that employs an expectation-maximization (EM) algorithm to generate taxonomic abundance profiles from full-length 16S rRNA reads. Results produced from two simulated datasets and two mock communities show Emu capable of accurate microbial community profiling while obtaining fewer false positives and false negatives than alternative methods. Additionally, we illustrate a real-world application of our new software by comparing clinical sample composition estimates generated by an established whole-genome shotgun sequencing workflow to those returned by full-length 16S sequences processed with Emu.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-022-01520-4</identifier><identifier>PMID: 35773532</identifier><language>eng</language><ispartof>Nature methods, 2022-06, Vol.19 (7), p.845-853</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids></links><search><creatorcontrib>Curry, Kristen D.</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Nute, Michael G.</creatorcontrib><creatorcontrib>Tyshaieva, Alona</creatorcontrib><creatorcontrib>Reeves, Elizabeth</creatorcontrib><creatorcontrib>Soriano, Sirena</creatorcontrib><creatorcontrib>Wu, Qinglong</creatorcontrib><creatorcontrib>Graeber, Enid</creatorcontrib><creatorcontrib>Finzer, Patrick</creatorcontrib><creatorcontrib>Mendling, Werner</creatorcontrib><creatorcontrib>Savidge, Tor</creatorcontrib><creatorcontrib>Villapol, Sonia</creatorcontrib><creatorcontrib>Dilthey, Alexander</creatorcontrib><creatorcontrib>Treangen, Todd J.</creatorcontrib><title>Emu: Species-Level Microbial Community Profiling for Full-Length Nanopore 16S Reads</title><title>Nature methods</title><description>16S rRNA based analysis is the established standard for elucidating microbial community composition. While short read 16S analyses are largely confined to genus-level resolution at best since only a portion of the gene is sequenced, full-length 16S sequences have the potential to provide species-level accuracy. However, existing taxonomic identification algorithms are not optimized for the increased read length and error rate often observed in long-read data. Here we present Emu, a novel approach that employs an expectation-maximization (EM) algorithm to generate taxonomic abundance profiles from full-length 16S rRNA reads. Results produced from two simulated datasets and two mock communities show Emu capable of accurate microbial community profiling while obtaining fewer false positives and false negatives than alternative methods. Additionally, we illustrate a real-world application of our new software by comparing clinical sample composition estimates generated by an established whole-genome shotgun sequencing workflow to those returned by full-length 16S sequences processed with Emu.</description><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqljLtOwzAYhS0Eoi3wAkz_Cxh8JTEDS9WqA6CKsFtu6qRGvkR2UqlvTwcYmBmOziedTwehe0oeKOH1YxFUKoYJO4dKRrC4QHMqRY0rSuTlLxNFZ2hRyhchnAsmr9GMy6rikrM5alZheoZmsK2zBb_ao_Xw5tqcds54WKYQpujGE2xz6px3sYcuZVhP3p_l2I8HeDcxDSlboE8NfFizL7foqjO-2LufvkEv69XncoOHaRfsvrVxzMbrIbtg8kkn4_TfJbqD7tNRK8VVXQn-74NvvgperQ</recordid><startdate>20220630</startdate><enddate>20220630</enddate><creator>Curry, Kristen D.</creator><creator>Wang, Qi</creator><creator>Nute, Michael G.</creator><creator>Tyshaieva, Alona</creator><creator>Reeves, Elizabeth</creator><creator>Soriano, Sirena</creator><creator>Wu, Qinglong</creator><creator>Graeber, Enid</creator><creator>Finzer, Patrick</creator><creator>Mendling, Werner</creator><creator>Savidge, Tor</creator><creator>Villapol, Sonia</creator><creator>Dilthey, Alexander</creator><creator>Treangen, Todd J.</creator><scope>5PM</scope></search><sort><creationdate>20220630</creationdate><title>Emu: Species-Level Microbial Community Profiling for Full-Length Nanopore 16S Reads</title><author>Curry, Kristen D. ; Wang, Qi ; Nute, Michael G. ; Tyshaieva, Alona ; Reeves, Elizabeth ; Soriano, Sirena ; Wu, Qinglong ; Graeber, Enid ; Finzer, Patrick ; Mendling, Werner ; Savidge, Tor ; Villapol, Sonia ; Dilthey, Alexander ; Treangen, Todd J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_99398743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curry, Kristen D.</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Nute, Michael G.</creatorcontrib><creatorcontrib>Tyshaieva, Alona</creatorcontrib><creatorcontrib>Reeves, Elizabeth</creatorcontrib><creatorcontrib>Soriano, Sirena</creatorcontrib><creatorcontrib>Wu, Qinglong</creatorcontrib><creatorcontrib>Graeber, Enid</creatorcontrib><creatorcontrib>Finzer, Patrick</creatorcontrib><creatorcontrib>Mendling, Werner</creatorcontrib><creatorcontrib>Savidge, Tor</creatorcontrib><creatorcontrib>Villapol, Sonia</creatorcontrib><creatorcontrib>Dilthey, Alexander</creatorcontrib><creatorcontrib>Treangen, Todd J.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curry, Kristen D.</au><au>Wang, Qi</au><au>Nute, Michael G.</au><au>Tyshaieva, Alona</au><au>Reeves, Elizabeth</au><au>Soriano, Sirena</au><au>Wu, Qinglong</au><au>Graeber, Enid</au><au>Finzer, Patrick</au><au>Mendling, Werner</au><au>Savidge, Tor</au><au>Villapol, Sonia</au><au>Dilthey, Alexander</au><au>Treangen, Todd J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emu: Species-Level Microbial Community Profiling for Full-Length Nanopore 16S Reads</atitle><jtitle>Nature methods</jtitle><date>2022-06-30</date><risdate>2022</risdate><volume>19</volume><issue>7</issue><spage>845</spage><epage>853</epage><pages>845-853</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>16S rRNA based analysis is the established standard for elucidating microbial community composition. While short read 16S analyses are largely confined to genus-level resolution at best since only a portion of the gene is sequenced, full-length 16S sequences have the potential to provide species-level accuracy. However, existing taxonomic identification algorithms are not optimized for the increased read length and error rate often observed in long-read data. Here we present Emu, a novel approach that employs an expectation-maximization (EM) algorithm to generate taxonomic abundance profiles from full-length 16S rRNA reads. Results produced from two simulated datasets and two mock communities show Emu capable of accurate microbial community profiling while obtaining fewer false positives and false negatives than alternative methods. Additionally, we illustrate a real-world application of our new software by comparing clinical sample composition estimates generated by an established whole-genome shotgun sequencing workflow to those returned by full-length 16S sequences processed with Emu.</abstract><pmid>35773532</pmid><doi>10.1038/s41592-022-01520-4</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2022-06, Vol.19 (7), p.845-853 |
issn | 1548-7091 1548-7105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9939874 |
source | SpringerLink Journals; Nature |
title | Emu: Species-Level Microbial Community Profiling for Full-Length Nanopore 16S Reads |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emu:%20Species-Level%20Microbial%20Community%20Profiling%20for%20Full-Length%20Nanopore%2016S%20Reads&rft.jtitle=Nature%20methods&rft.au=Curry,%20Kristen%20D.&rft.date=2022-06-30&rft.volume=19&rft.issue=7&rft.spage=845&rft.epage=853&rft.pages=845-853&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-022-01520-4&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_9939874%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35773532&rfr_iscdi=true |