The Origins, Evolution, and Future of Dietary Methionine Restriction
The original description of dietary methionine restriction (MR) used semipurified diets to limit methionine intake to 20% of normal levels, and this reduction in dietary methionine increased longevity by ∼30% in rats. The MR diet also produces paradoxical increases in energy intake and expenditure a...
Gespeichert in:
Veröffentlicht in: | Annual review of nutrition 2022-08, Vol.42 (1), p.201-226 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 226 |
---|---|
container_issue | 1 |
container_start_page | 201 |
container_title | Annual review of nutrition |
container_volume | 42 |
creator | Fang, Han Stone, Kirsten P Wanders, Desiree Forney, Laura A Gettys, Thomas W |
description | The original description of dietary methionine restriction (MR) used semipurified diets to limit methionine intake to 20% of normal levels, and this reduction in dietary methionine increased longevity by ∼30% in rats. The MR diet also produces paradoxical increases in energy intake and expenditure and limits fat deposition while reducing tissue and circulating lipids and enhancing overall insulin sensitivity. In the years following the original 1993 report, a comprehensive effort has been made to understand the nutrient sensing and signaling systems linking reduced dietary methionine to the behavioral, physiological, biochemical, and transcriptional components of the response. Recent work has shown that transcriptional activation of hepatic fibroblast growth factor 21 (FGF21) is a key event linking the MR diet to many but not all components of its metabolic phenotype. These findings raise the interesting possibility of developing therapeutic, MR-based diets that produce the beneficial effects of FGF21 by nutritionally modulating its transcription and release. |
doi_str_mv | 10.1146/annurev-nutr-062320-111849 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9936953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667791079</sourcerecordid><originalsourceid>FETCH-LOGICAL-a482t-f6ae7600f6a9b6e85f5e049084c22f0fbe94e2e2d4f09bc2cacde427a348c3ea3</originalsourceid><addsrcrecordid>eNqVkctOwzAQRS0EglL4BRSxYtGAX0lsFiBUnhIICcHactwJNUodsJMi_h5HKRUsWc1i7tw7MwehQ4KPCeH5iXau87BMXdf6FOeUUZwSQgSXG2hEMp6lnBG6iUaYSJlKIbIdtBvCG8ZYMsa20Q7LMiE4ZyN0-TyH5NHbV-vCJLlaNnXX2sZNEu1myXXXxqCkqZJLC632X8kDtPPYtg6SJwitt6ZX76GtStcB9ld1jF6ur56nt-n9483d9OI-1VzQNq1yDUWOcayyzEFkVQaYSyy4obTCVQmSAwU64xWWpaFGmxlwWmjGhWGg2RidDb7vXbmAmQHXel2rd28XcTnVaKv-dpydq9dmqaRkucxYNDhaGfjmo4sHqIUNBupaO2i6oGieF4UkuJBRejpIjW9C8FCtYwhWPQa1wqB6DGrAoAYMcfjg96Lr0Z-_R8H5IOhNdB1tLHyG_0R8A9xon5M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667791079</pqid></control><display><type>article</type><title>The Origins, Evolution, and Future of Dietary Methionine Restriction</title><source>Annual Reviews Complete A-Z List</source><source>MEDLINE</source><creator>Fang, Han ; Stone, Kirsten P ; Wanders, Desiree ; Forney, Laura A ; Gettys, Thomas W</creator><creatorcontrib>Fang, Han ; Stone, Kirsten P ; Wanders, Desiree ; Forney, Laura A ; Gettys, Thomas W</creatorcontrib><description>The original description of dietary methionine restriction (MR) used semipurified diets to limit methionine intake to 20% of normal levels, and this reduction in dietary methionine increased longevity by ∼30% in rats. The MR diet also produces paradoxical increases in energy intake and expenditure and limits fat deposition while reducing tissue and circulating lipids and enhancing overall insulin sensitivity. In the years following the original 1993 report, a comprehensive effort has been made to understand the nutrient sensing and signaling systems linking reduced dietary methionine to the behavioral, physiological, biochemical, and transcriptional components of the response. Recent work has shown that transcriptional activation of hepatic fibroblast growth factor 21 (FGF21) is a key event linking the MR diet to many but not all components of its metabolic phenotype. These findings raise the interesting possibility of developing therapeutic, MR-based diets that produce the beneficial effects of FGF21 by nutritionally modulating its transcription and release.</description><identifier>ISSN: 0199-9885</identifier><identifier>ISSN: 1545-4312</identifier><identifier>EISSN: 1545-4312</identifier><identifier>DOI: 10.1146/annurev-nutr-062320-111849</identifier><identifier>PMID: 35588443</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Animals ; Diet ; Energy Intake ; Energy Metabolism ; essential amino acids ; FGF21 ; Fibroblast Growth Factors - genetics ; Fibroblast Growth Factors - metabolism ; Humans ; Insulin Resistance ; insulin sensitivity ; lipid metabolism ; Liver - metabolism ; Methionine - metabolism ; nutrient sensing ; obesity ; Rats</subject><ispartof>Annual review of nutrition, 2022-08, Vol.42 (1), p.201-226</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a482t-f6ae7600f6a9b6e85f5e049084c22f0fbe94e2e2d4f09bc2cacde427a348c3ea3</citedby><cites>FETCH-LOGICAL-a482t-f6ae7600f6a9b6e85f5e049084c22f0fbe94e2e2d4f09bc2cacde427a348c3ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-nutr-062320-111849?crawler=true&mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-nutr-062320-111849$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,230,314,776,780,881,4168,27901,27902,77996,77997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35588443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Han</creatorcontrib><creatorcontrib>Stone, Kirsten P</creatorcontrib><creatorcontrib>Wanders, Desiree</creatorcontrib><creatorcontrib>Forney, Laura A</creatorcontrib><creatorcontrib>Gettys, Thomas W</creatorcontrib><title>The Origins, Evolution, and Future of Dietary Methionine Restriction</title><title>Annual review of nutrition</title><addtitle>Annu Rev Nutr</addtitle><description>The original description of dietary methionine restriction (MR) used semipurified diets to limit methionine intake to 20% of normal levels, and this reduction in dietary methionine increased longevity by ∼30% in rats. The MR diet also produces paradoxical increases in energy intake and expenditure and limits fat deposition while reducing tissue and circulating lipids and enhancing overall insulin sensitivity. In the years following the original 1993 report, a comprehensive effort has been made to understand the nutrient sensing and signaling systems linking reduced dietary methionine to the behavioral, physiological, biochemical, and transcriptional components of the response. Recent work has shown that transcriptional activation of hepatic fibroblast growth factor 21 (FGF21) is a key event linking the MR diet to many but not all components of its metabolic phenotype. These findings raise the interesting possibility of developing therapeutic, MR-based diets that produce the beneficial effects of FGF21 by nutritionally modulating its transcription and release.</description><subject>Animals</subject><subject>Diet</subject><subject>Energy Intake</subject><subject>Energy Metabolism</subject><subject>essential amino acids</subject><subject>FGF21</subject><subject>Fibroblast Growth Factors - genetics</subject><subject>Fibroblast Growth Factors - metabolism</subject><subject>Humans</subject><subject>Insulin Resistance</subject><subject>insulin sensitivity</subject><subject>lipid metabolism</subject><subject>Liver - metabolism</subject><subject>Methionine - metabolism</subject><subject>nutrient sensing</subject><subject>obesity</subject><subject>Rats</subject><issn>0199-9885</issn><issn>1545-4312</issn><issn>1545-4312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkctOwzAQRS0EglL4BRSxYtGAX0lsFiBUnhIICcHactwJNUodsJMi_h5HKRUsWc1i7tw7MwehQ4KPCeH5iXau87BMXdf6FOeUUZwSQgSXG2hEMp6lnBG6iUaYSJlKIbIdtBvCG8ZYMsa20Q7LMiE4ZyN0-TyH5NHbV-vCJLlaNnXX2sZNEu1myXXXxqCkqZJLC632X8kDtPPYtg6SJwitt6ZX76GtStcB9ld1jF6ur56nt-n9483d9OI-1VzQNq1yDUWOcayyzEFkVQaYSyy4obTCVQmSAwU64xWWpaFGmxlwWmjGhWGg2RidDb7vXbmAmQHXel2rd28XcTnVaKv-dpydq9dmqaRkucxYNDhaGfjmo4sHqIUNBupaO2i6oGieF4UkuJBRejpIjW9C8FCtYwhWPQa1wqB6DGrAoAYMcfjg96Lr0Z-_R8H5IOhNdB1tLHyG_0R8A9xon5M</recordid><startdate>20220822</startdate><enddate>20220822</enddate><creator>Fang, Han</creator><creator>Stone, Kirsten P</creator><creator>Wanders, Desiree</creator><creator>Forney, Laura A</creator><creator>Gettys, Thomas W</creator><general>Annual Reviews</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220822</creationdate><title>The Origins, Evolution, and Future of Dietary Methionine Restriction</title><author>Fang, Han ; Stone, Kirsten P ; Wanders, Desiree ; Forney, Laura A ; Gettys, Thomas W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a482t-f6ae7600f6a9b6e85f5e049084c22f0fbe94e2e2d4f09bc2cacde427a348c3ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Diet</topic><topic>Energy Intake</topic><topic>Energy Metabolism</topic><topic>essential amino acids</topic><topic>FGF21</topic><topic>Fibroblast Growth Factors - genetics</topic><topic>Fibroblast Growth Factors - metabolism</topic><topic>Humans</topic><topic>Insulin Resistance</topic><topic>insulin sensitivity</topic><topic>lipid metabolism</topic><topic>Liver - metabolism</topic><topic>Methionine - metabolism</topic><topic>nutrient sensing</topic><topic>obesity</topic><topic>Rats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Han</creatorcontrib><creatorcontrib>Stone, Kirsten P</creatorcontrib><creatorcontrib>Wanders, Desiree</creatorcontrib><creatorcontrib>Forney, Laura A</creatorcontrib><creatorcontrib>Gettys, Thomas W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annual review of nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Han</au><au>Stone, Kirsten P</au><au>Wanders, Desiree</au><au>Forney, Laura A</au><au>Gettys, Thomas W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Origins, Evolution, and Future of Dietary Methionine Restriction</atitle><jtitle>Annual review of nutrition</jtitle><addtitle>Annu Rev Nutr</addtitle><date>2022-08-22</date><risdate>2022</risdate><volume>42</volume><issue>1</issue><spage>201</spage><epage>226</epage><pages>201-226</pages><issn>0199-9885</issn><issn>1545-4312</issn><eissn>1545-4312</eissn><abstract>The original description of dietary methionine restriction (MR) used semipurified diets to limit methionine intake to 20% of normal levels, and this reduction in dietary methionine increased longevity by ∼30% in rats. The MR diet also produces paradoxical increases in energy intake and expenditure and limits fat deposition while reducing tissue and circulating lipids and enhancing overall insulin sensitivity. In the years following the original 1993 report, a comprehensive effort has been made to understand the nutrient sensing and signaling systems linking reduced dietary methionine to the behavioral, physiological, biochemical, and transcriptional components of the response. Recent work has shown that transcriptional activation of hepatic fibroblast growth factor 21 (FGF21) is a key event linking the MR diet to many but not all components of its metabolic phenotype. These findings raise the interesting possibility of developing therapeutic, MR-based diets that produce the beneficial effects of FGF21 by nutritionally modulating its transcription and release.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>35588443</pmid><doi>10.1146/annurev-nutr-062320-111849</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0199-9885 |
ispartof | Annual review of nutrition, 2022-08, Vol.42 (1), p.201-226 |
issn | 0199-9885 1545-4312 1545-4312 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9936953 |
source | Annual Reviews Complete A-Z List; MEDLINE |
subjects | Animals Diet Energy Intake Energy Metabolism essential amino acids FGF21 Fibroblast Growth Factors - genetics Fibroblast Growth Factors - metabolism Humans Insulin Resistance insulin sensitivity lipid metabolism Liver - metabolism Methionine - metabolism nutrient sensing obesity Rats |
title | The Origins, Evolution, and Future of Dietary Methionine Restriction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Origins,%20Evolution,%20and%20Future%20of%20Dietary%20Methionine%20Restriction&rft.jtitle=Annual%20review%20of%20nutrition&rft.au=Fang,%20Han&rft.date=2022-08-22&rft.volume=42&rft.issue=1&rft.spage=201&rft.epage=226&rft.pages=201-226&rft.issn=0199-9885&rft.eissn=1545-4312&rft_id=info:doi/10.1146/annurev-nutr-062320-111849&rft_dat=%3Cproquest_pubme%3E2667791079%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667791079&rft_id=info:pmid/35588443&rfr_iscdi=true |