The Origins, Evolution, and Future of Dietary Methionine Restriction

The original description of dietary methionine restriction (MR) used semipurified diets to limit methionine intake to 20% of normal levels, and this reduction in dietary methionine increased longevity by ∼30% in rats. The MR diet also produces paradoxical increases in energy intake and expenditure a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of nutrition 2022-08, Vol.42 (1), p.201-226
Hauptverfasser: Fang, Han, Stone, Kirsten P, Wanders, Desiree, Forney, Laura A, Gettys, Thomas W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226
container_issue 1
container_start_page 201
container_title Annual review of nutrition
container_volume 42
creator Fang, Han
Stone, Kirsten P
Wanders, Desiree
Forney, Laura A
Gettys, Thomas W
description The original description of dietary methionine restriction (MR) used semipurified diets to limit methionine intake to 20% of normal levels, and this reduction in dietary methionine increased longevity by ∼30% in rats. The MR diet also produces paradoxical increases in energy intake and expenditure and limits fat deposition while reducing tissue and circulating lipids and enhancing overall insulin sensitivity. In the years following the original 1993 report, a comprehensive effort has been made to understand the nutrient sensing and signaling systems linking reduced dietary methionine to the behavioral, physiological, biochemical, and transcriptional components of the response. Recent work has shown that transcriptional activation of hepatic fibroblast growth factor 21 (FGF21) is a key event linking the MR diet to many but not all components of its metabolic phenotype. These findings raise the interesting possibility of developing therapeutic, MR-based diets that produce the beneficial effects of FGF21 by nutritionally modulating its transcription and release.
doi_str_mv 10.1146/annurev-nutr-062320-111849
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9936953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667791079</sourcerecordid><originalsourceid>FETCH-LOGICAL-a482t-f6ae7600f6a9b6e85f5e049084c22f0fbe94e2e2d4f09bc2cacde427a348c3ea3</originalsourceid><addsrcrecordid>eNqVkctOwzAQRS0EglL4BRSxYtGAX0lsFiBUnhIICcHactwJNUodsJMi_h5HKRUsWc1i7tw7MwehQ4KPCeH5iXau87BMXdf6FOeUUZwSQgSXG2hEMp6lnBG6iUaYSJlKIbIdtBvCG8ZYMsa20Q7LMiE4ZyN0-TyH5NHbV-vCJLlaNnXX2sZNEu1myXXXxqCkqZJLC632X8kDtPPYtg6SJwitt6ZX76GtStcB9ld1jF6ur56nt-n9483d9OI-1VzQNq1yDUWOcayyzEFkVQaYSyy4obTCVQmSAwU64xWWpaFGmxlwWmjGhWGg2RidDb7vXbmAmQHXel2rd28XcTnVaKv-dpydq9dmqaRkucxYNDhaGfjmo4sHqIUNBupaO2i6oGieF4UkuJBRejpIjW9C8FCtYwhWPQa1wqB6DGrAoAYMcfjg96Lr0Z-_R8H5IOhNdB1tLHyG_0R8A9xon5M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667791079</pqid></control><display><type>article</type><title>The Origins, Evolution, and Future of Dietary Methionine Restriction</title><source>Annual Reviews Complete A-Z List</source><source>MEDLINE</source><creator>Fang, Han ; Stone, Kirsten P ; Wanders, Desiree ; Forney, Laura A ; Gettys, Thomas W</creator><creatorcontrib>Fang, Han ; Stone, Kirsten P ; Wanders, Desiree ; Forney, Laura A ; Gettys, Thomas W</creatorcontrib><description>The original description of dietary methionine restriction (MR) used semipurified diets to limit methionine intake to 20% of normal levels, and this reduction in dietary methionine increased longevity by ∼30% in rats. The MR diet also produces paradoxical increases in energy intake and expenditure and limits fat deposition while reducing tissue and circulating lipids and enhancing overall insulin sensitivity. In the years following the original 1993 report, a comprehensive effort has been made to understand the nutrient sensing and signaling systems linking reduced dietary methionine to the behavioral, physiological, biochemical, and transcriptional components of the response. Recent work has shown that transcriptional activation of hepatic fibroblast growth factor 21 (FGF21) is a key event linking the MR diet to many but not all components of its metabolic phenotype. These findings raise the interesting possibility of developing therapeutic, MR-based diets that produce the beneficial effects of FGF21 by nutritionally modulating its transcription and release.</description><identifier>ISSN: 0199-9885</identifier><identifier>ISSN: 1545-4312</identifier><identifier>EISSN: 1545-4312</identifier><identifier>DOI: 10.1146/annurev-nutr-062320-111849</identifier><identifier>PMID: 35588443</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Animals ; Diet ; Energy Intake ; Energy Metabolism ; essential amino acids ; FGF21 ; Fibroblast Growth Factors - genetics ; Fibroblast Growth Factors - metabolism ; Humans ; Insulin Resistance ; insulin sensitivity ; lipid metabolism ; Liver - metabolism ; Methionine - metabolism ; nutrient sensing ; obesity ; Rats</subject><ispartof>Annual review of nutrition, 2022-08, Vol.42 (1), p.201-226</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a482t-f6ae7600f6a9b6e85f5e049084c22f0fbe94e2e2d4f09bc2cacde427a348c3ea3</citedby><cites>FETCH-LOGICAL-a482t-f6ae7600f6a9b6e85f5e049084c22f0fbe94e2e2d4f09bc2cacde427a348c3ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-nutr-062320-111849?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-nutr-062320-111849$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,230,314,776,780,881,4168,27901,27902,77996,77997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35588443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Han</creatorcontrib><creatorcontrib>Stone, Kirsten P</creatorcontrib><creatorcontrib>Wanders, Desiree</creatorcontrib><creatorcontrib>Forney, Laura A</creatorcontrib><creatorcontrib>Gettys, Thomas W</creatorcontrib><title>The Origins, Evolution, and Future of Dietary Methionine Restriction</title><title>Annual review of nutrition</title><addtitle>Annu Rev Nutr</addtitle><description>The original description of dietary methionine restriction (MR) used semipurified diets to limit methionine intake to 20% of normal levels, and this reduction in dietary methionine increased longevity by ∼30% in rats. The MR diet also produces paradoxical increases in energy intake and expenditure and limits fat deposition while reducing tissue and circulating lipids and enhancing overall insulin sensitivity. In the years following the original 1993 report, a comprehensive effort has been made to understand the nutrient sensing and signaling systems linking reduced dietary methionine to the behavioral, physiological, biochemical, and transcriptional components of the response. Recent work has shown that transcriptional activation of hepatic fibroblast growth factor 21 (FGF21) is a key event linking the MR diet to many but not all components of its metabolic phenotype. These findings raise the interesting possibility of developing therapeutic, MR-based diets that produce the beneficial effects of FGF21 by nutritionally modulating its transcription and release.</description><subject>Animals</subject><subject>Diet</subject><subject>Energy Intake</subject><subject>Energy Metabolism</subject><subject>essential amino acids</subject><subject>FGF21</subject><subject>Fibroblast Growth Factors - genetics</subject><subject>Fibroblast Growth Factors - metabolism</subject><subject>Humans</subject><subject>Insulin Resistance</subject><subject>insulin sensitivity</subject><subject>lipid metabolism</subject><subject>Liver - metabolism</subject><subject>Methionine - metabolism</subject><subject>nutrient sensing</subject><subject>obesity</subject><subject>Rats</subject><issn>0199-9885</issn><issn>1545-4312</issn><issn>1545-4312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkctOwzAQRS0EglL4BRSxYtGAX0lsFiBUnhIICcHactwJNUodsJMi_h5HKRUsWc1i7tw7MwehQ4KPCeH5iXau87BMXdf6FOeUUZwSQgSXG2hEMp6lnBG6iUaYSJlKIbIdtBvCG8ZYMsa20Q7LMiE4ZyN0-TyH5NHbV-vCJLlaNnXX2sZNEu1myXXXxqCkqZJLC632X8kDtPPYtg6SJwitt6ZX76GtStcB9ld1jF6ur56nt-n9483d9OI-1VzQNq1yDUWOcayyzEFkVQaYSyy4obTCVQmSAwU64xWWpaFGmxlwWmjGhWGg2RidDb7vXbmAmQHXel2rd28XcTnVaKv-dpydq9dmqaRkucxYNDhaGfjmo4sHqIUNBupaO2i6oGieF4UkuJBRejpIjW9C8FCtYwhWPQa1wqB6DGrAoAYMcfjg96Lr0Z-_R8H5IOhNdB1tLHyG_0R8A9xon5M</recordid><startdate>20220822</startdate><enddate>20220822</enddate><creator>Fang, Han</creator><creator>Stone, Kirsten P</creator><creator>Wanders, Desiree</creator><creator>Forney, Laura A</creator><creator>Gettys, Thomas W</creator><general>Annual Reviews</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220822</creationdate><title>The Origins, Evolution, and Future of Dietary Methionine Restriction</title><author>Fang, Han ; Stone, Kirsten P ; Wanders, Desiree ; Forney, Laura A ; Gettys, Thomas W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a482t-f6ae7600f6a9b6e85f5e049084c22f0fbe94e2e2d4f09bc2cacde427a348c3ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Diet</topic><topic>Energy Intake</topic><topic>Energy Metabolism</topic><topic>essential amino acids</topic><topic>FGF21</topic><topic>Fibroblast Growth Factors - genetics</topic><topic>Fibroblast Growth Factors - metabolism</topic><topic>Humans</topic><topic>Insulin Resistance</topic><topic>insulin sensitivity</topic><topic>lipid metabolism</topic><topic>Liver - metabolism</topic><topic>Methionine - metabolism</topic><topic>nutrient sensing</topic><topic>obesity</topic><topic>Rats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Han</creatorcontrib><creatorcontrib>Stone, Kirsten P</creatorcontrib><creatorcontrib>Wanders, Desiree</creatorcontrib><creatorcontrib>Forney, Laura A</creatorcontrib><creatorcontrib>Gettys, Thomas W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annual review of nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Han</au><au>Stone, Kirsten P</au><au>Wanders, Desiree</au><au>Forney, Laura A</au><au>Gettys, Thomas W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Origins, Evolution, and Future of Dietary Methionine Restriction</atitle><jtitle>Annual review of nutrition</jtitle><addtitle>Annu Rev Nutr</addtitle><date>2022-08-22</date><risdate>2022</risdate><volume>42</volume><issue>1</issue><spage>201</spage><epage>226</epage><pages>201-226</pages><issn>0199-9885</issn><issn>1545-4312</issn><eissn>1545-4312</eissn><abstract>The original description of dietary methionine restriction (MR) used semipurified diets to limit methionine intake to 20% of normal levels, and this reduction in dietary methionine increased longevity by ∼30% in rats. The MR diet also produces paradoxical increases in energy intake and expenditure and limits fat deposition while reducing tissue and circulating lipids and enhancing overall insulin sensitivity. In the years following the original 1993 report, a comprehensive effort has been made to understand the nutrient sensing and signaling systems linking reduced dietary methionine to the behavioral, physiological, biochemical, and transcriptional components of the response. Recent work has shown that transcriptional activation of hepatic fibroblast growth factor 21 (FGF21) is a key event linking the MR diet to many but not all components of its metabolic phenotype. These findings raise the interesting possibility of developing therapeutic, MR-based diets that produce the beneficial effects of FGF21 by nutritionally modulating its transcription and release.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>35588443</pmid><doi>10.1146/annurev-nutr-062320-111849</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0199-9885
ispartof Annual review of nutrition, 2022-08, Vol.42 (1), p.201-226
issn 0199-9885
1545-4312
1545-4312
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9936953
source Annual Reviews Complete A-Z List; MEDLINE
subjects Animals
Diet
Energy Intake
Energy Metabolism
essential amino acids
FGF21
Fibroblast Growth Factors - genetics
Fibroblast Growth Factors - metabolism
Humans
Insulin Resistance
insulin sensitivity
lipid metabolism
Liver - metabolism
Methionine - metabolism
nutrient sensing
obesity
Rats
title The Origins, Evolution, and Future of Dietary Methionine Restriction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Origins,%20Evolution,%20and%20Future%20of%20Dietary%20Methionine%20Restriction&rft.jtitle=Annual%20review%20of%20nutrition&rft.au=Fang,%20Han&rft.date=2022-08-22&rft.volume=42&rft.issue=1&rft.spage=201&rft.epage=226&rft.pages=201-226&rft.issn=0199-9885&rft.eissn=1545-4312&rft_id=info:doi/10.1146/annurev-nutr-062320-111849&rft_dat=%3Cproquest_pubme%3E2667791079%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667791079&rft_id=info:pmid/35588443&rfr_iscdi=true