Robust Nanoparticle-Derived Lubricious Antibiofilm Coating for Difficult-to-Coat Medical Devices with Intricate Geometry

A major medical device-associated complication is the biofilm-related infection post-implantation. One promising approach to prevent this is to coat already commercialized medical devices with effective antibiofilm materials. However, developing a robust high-performance antibiofilm coating on devic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS Nanoscience Au 2023-02, Vol.3 (1), p.67-83
Hauptverfasser: Yazdani-Ahmadabadi, Hossein, Yu, Kai, Khoddami, Sara, F. Felix, Demian, Yeh, Han H., Luo, Haiming D., Moskalev, Igor, Wang, Qiong, Wang, Rizhi, Grecov, Dana, Fazli, Ladan, Lange, Dirk, Kizhakkedathu, Jayachandran N.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83
container_issue 1
container_start_page 67
container_title ACS Nanoscience Au
container_volume 3
creator Yazdani-Ahmadabadi, Hossein
Yu, Kai
Khoddami, Sara
F. Felix, Demian
Yeh, Han H.
Luo, Haiming D.
Moskalev, Igor
Wang, Qiong
Wang, Rizhi
Grecov, Dana
Fazli, Ladan
Lange, Dirk
Kizhakkedathu, Jayachandran N.
description A major medical device-associated complication is the biofilm-related infection post-implantation. One promising approach to prevent this is to coat already commercialized medical devices with effective antibiofilm materials. However, developing a robust high-performance antibiofilm coating on devices with a nonflat geometry remains unmet. Here, we report the development of a facile scalable nanoparticle-based antibiofilm silver composite coating with long-term activity applicable to virtually any objects including difficult-to-coat commercially available medical devices utilizing a catecholic organic–aqueous mixture. Using a screening approach, we have identified a combination of the organic–aqueous buffer mixture which alters polycatecholamine synthesis, nanoparticle formation, and stabilization, resulting in controlled deposition of in situ formed composite silver nanoparticles in the presence of an ultra-high-molecular-weight hydrophilic polymer on diverse objects irrespective of its geometry and chemistry. Methanol-mediated synthesis of polymer–silver composite nanoparticles resulted in a biocompatible lubricious coating with high mechanical durability, long-term silver release (∼90 days), complete inhibition of bacterial adhesion, and excellent killing activity against a diverse range of bacteria over the long term. Coated catheters retained their excellent activity even after exposure to harsh mechanical challenges (rubbing, twisting, and stretching) and storage conditions (>3 months stirring in water). We confirmed its excellent bacteria-killing efficacy (>99.999%) against difficult-to-kill bacteria (Proteus mirabilis) and high biocompatibility using percutaneous catheter infection mice and subcutaneous implant rat models, respectively, in vivo. The developed coating approach opens a new avenue to transform clinically used medical devices (e.g., urinary catheters) to highly infection-resistant devices to prevent and treat implant/device-associated infections.
doi_str_mv 10.1021/acsnanoscienceau.2c00040
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9936578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779348328</sourcerecordid><originalsourceid>FETCH-LOGICAL-a465t-ecb1d75680262c746f5104c68b00e323882fc9be7070e3326aa509187aae5b313</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1ERavSv4B85JLij8RxLkjVLpRKW5Cq9mw53kk7VWIvtrPQf49Xu60KF07j0bzzzHheQihn55wJ_sm65K0PySF4B3Y-F44xVrM35ESorq5E3am3r97H5CylxyIRDZdCyXfkWCotGOuaE_L7JvRzyvR7IW5szOhGqJYQcQtrupr7iA7DnOiFz9hjGHCc6CLYjP6eDiHSJQ4DunnMVQ7VrkCvYY3OjnQJW3SQ6C_MD_TK50KyGeglhAlyfHpPjgY7Jjg7xFNy9_XL7eJbtfpxebW4WFW2Vk2uwPV83TZKM6GEa2s1NJzVTumeMZBCai0G1_XQsrbk5XvWNqzjurUWml5yeUo-77mbuZ9g7aBsYkeziTjZ-GSCRfN3xeODuQ9b03VSNa0ugI8HQAw_Z0jZTJgcjKP1UC5jRNt2stZS7KR6L3UxpBRheBnDmdl5Z_71zhy8K60fXq_50vjsVBHUe0FBmMcwR1-u9n_uH4F0rz0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779348328</pqid></control><display><type>article</type><title>Robust Nanoparticle-Derived Lubricious Antibiofilm Coating for Difficult-to-Coat Medical Devices with Intricate Geometry</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Yazdani-Ahmadabadi, Hossein ; Yu, Kai ; Khoddami, Sara ; F. Felix, Demian ; Yeh, Han H. ; Luo, Haiming D. ; Moskalev, Igor ; Wang, Qiong ; Wang, Rizhi ; Grecov, Dana ; Fazli, Ladan ; Lange, Dirk ; Kizhakkedathu, Jayachandran N.</creator><creatorcontrib>Yazdani-Ahmadabadi, Hossein ; Yu, Kai ; Khoddami, Sara ; F. Felix, Demian ; Yeh, Han H. ; Luo, Haiming D. ; Moskalev, Igor ; Wang, Qiong ; Wang, Rizhi ; Grecov, Dana ; Fazli, Ladan ; Lange, Dirk ; Kizhakkedathu, Jayachandran N.</creatorcontrib><description>A major medical device-associated complication is the biofilm-related infection post-implantation. One promising approach to prevent this is to coat already commercialized medical devices with effective antibiofilm materials. However, developing a robust high-performance antibiofilm coating on devices with a nonflat geometry remains unmet. Here, we report the development of a facile scalable nanoparticle-based antibiofilm silver composite coating with long-term activity applicable to virtually any objects including difficult-to-coat commercially available medical devices utilizing a catecholic organic–aqueous mixture. Using a screening approach, we have identified a combination of the organic–aqueous buffer mixture which alters polycatecholamine synthesis, nanoparticle formation, and stabilization, resulting in controlled deposition of in situ formed composite silver nanoparticles in the presence of an ultra-high-molecular-weight hydrophilic polymer on diverse objects irrespective of its geometry and chemistry. Methanol-mediated synthesis of polymer–silver composite nanoparticles resulted in a biocompatible lubricious coating with high mechanical durability, long-term silver release (∼90 days), complete inhibition of bacterial adhesion, and excellent killing activity against a diverse range of bacteria over the long term. Coated catheters retained their excellent activity even after exposure to harsh mechanical challenges (rubbing, twisting, and stretching) and storage conditions (&gt;3 months stirring in water). We confirmed its excellent bacteria-killing efficacy (&gt;99.999%) against difficult-to-kill bacteria (Proteus mirabilis) and high biocompatibility using percutaneous catheter infection mice and subcutaneous implant rat models, respectively, in vivo. The developed coating approach opens a new avenue to transform clinically used medical devices (e.g., urinary catheters) to highly infection-resistant devices to prevent and treat implant/device-associated infections.</description><identifier>ISSN: 2694-2496</identifier><identifier>EISSN: 2694-2496</identifier><identifier>DOI: 10.1021/acsnanoscienceau.2c00040</identifier><identifier>PMID: 36820095</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS Nanoscience Au, 2023-02, Vol.3 (1), p.67-83</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>2022 The Authors. Published by American Chemical Society.</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a465t-ecb1d75680262c746f5104c68b00e323882fc9be7070e3326aa509187aae5b313</citedby><cites>FETCH-LOGICAL-a465t-ecb1d75680262c746f5104c68b00e323882fc9be7070e3326aa509187aae5b313</cites><orcidid>0000-0001-7688-7574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936578/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936578/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36820095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yazdani-Ahmadabadi, Hossein</creatorcontrib><creatorcontrib>Yu, Kai</creatorcontrib><creatorcontrib>Khoddami, Sara</creatorcontrib><creatorcontrib>F. Felix, Demian</creatorcontrib><creatorcontrib>Yeh, Han H.</creatorcontrib><creatorcontrib>Luo, Haiming D.</creatorcontrib><creatorcontrib>Moskalev, Igor</creatorcontrib><creatorcontrib>Wang, Qiong</creatorcontrib><creatorcontrib>Wang, Rizhi</creatorcontrib><creatorcontrib>Grecov, Dana</creatorcontrib><creatorcontrib>Fazli, Ladan</creatorcontrib><creatorcontrib>Lange, Dirk</creatorcontrib><creatorcontrib>Kizhakkedathu, Jayachandran N.</creatorcontrib><title>Robust Nanoparticle-Derived Lubricious Antibiofilm Coating for Difficult-to-Coat Medical Devices with Intricate Geometry</title><title>ACS Nanoscience Au</title><addtitle>ACS Nanosci. Au</addtitle><description>A major medical device-associated complication is the biofilm-related infection post-implantation. One promising approach to prevent this is to coat already commercialized medical devices with effective antibiofilm materials. However, developing a robust high-performance antibiofilm coating on devices with a nonflat geometry remains unmet. Here, we report the development of a facile scalable nanoparticle-based antibiofilm silver composite coating with long-term activity applicable to virtually any objects including difficult-to-coat commercially available medical devices utilizing a catecholic organic–aqueous mixture. Using a screening approach, we have identified a combination of the organic–aqueous buffer mixture which alters polycatecholamine synthesis, nanoparticle formation, and stabilization, resulting in controlled deposition of in situ formed composite silver nanoparticles in the presence of an ultra-high-molecular-weight hydrophilic polymer on diverse objects irrespective of its geometry and chemistry. Methanol-mediated synthesis of polymer–silver composite nanoparticles resulted in a biocompatible lubricious coating with high mechanical durability, long-term silver release (∼90 days), complete inhibition of bacterial adhesion, and excellent killing activity against a diverse range of bacteria over the long term. Coated catheters retained their excellent activity even after exposure to harsh mechanical challenges (rubbing, twisting, and stretching) and storage conditions (&gt;3 months stirring in water). We confirmed its excellent bacteria-killing efficacy (&gt;99.999%) against difficult-to-kill bacteria (Proteus mirabilis) and high biocompatibility using percutaneous catheter infection mice and subcutaneous implant rat models, respectively, in vivo. The developed coating approach opens a new avenue to transform clinically used medical devices (e.g., urinary catheters) to highly infection-resistant devices to prevent and treat implant/device-associated infections.</description><issn>2694-2496</issn><issn>2694-2496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi1ERavSv4B85JLij8RxLkjVLpRKW5Cq9mw53kk7VWIvtrPQf49Xu60KF07j0bzzzHheQihn55wJ_sm65K0PySF4B3Y-F44xVrM35ESorq5E3am3r97H5CylxyIRDZdCyXfkWCotGOuaE_L7JvRzyvR7IW5szOhGqJYQcQtrupr7iA7DnOiFz9hjGHCc6CLYjP6eDiHSJQ4DunnMVQ7VrkCvYY3OjnQJW3SQ6C_MD_TK50KyGeglhAlyfHpPjgY7Jjg7xFNy9_XL7eJbtfpxebW4WFW2Vk2uwPV83TZKM6GEa2s1NJzVTumeMZBCai0G1_XQsrbk5XvWNqzjurUWml5yeUo-77mbuZ9g7aBsYkeziTjZ-GSCRfN3xeODuQ9b03VSNa0ugI8HQAw_Z0jZTJgcjKP1UC5jRNt2stZS7KR6L3UxpBRheBnDmdl5Z_71zhy8K60fXq_50vjsVBHUe0FBmMcwR1-u9n_uH4F0rz0</recordid><startdate>20230215</startdate><enddate>20230215</enddate><creator>Yazdani-Ahmadabadi, Hossein</creator><creator>Yu, Kai</creator><creator>Khoddami, Sara</creator><creator>F. Felix, Demian</creator><creator>Yeh, Han H.</creator><creator>Luo, Haiming D.</creator><creator>Moskalev, Igor</creator><creator>Wang, Qiong</creator><creator>Wang, Rizhi</creator><creator>Grecov, Dana</creator><creator>Fazli, Ladan</creator><creator>Lange, Dirk</creator><creator>Kizhakkedathu, Jayachandran N.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7688-7574</orcidid></search><sort><creationdate>20230215</creationdate><title>Robust Nanoparticle-Derived Lubricious Antibiofilm Coating for Difficult-to-Coat Medical Devices with Intricate Geometry</title><author>Yazdani-Ahmadabadi, Hossein ; Yu, Kai ; Khoddami, Sara ; F. Felix, Demian ; Yeh, Han H. ; Luo, Haiming D. ; Moskalev, Igor ; Wang, Qiong ; Wang, Rizhi ; Grecov, Dana ; Fazli, Ladan ; Lange, Dirk ; Kizhakkedathu, Jayachandran N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a465t-ecb1d75680262c746f5104c68b00e323882fc9be7070e3326aa509187aae5b313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yazdani-Ahmadabadi, Hossein</creatorcontrib><creatorcontrib>Yu, Kai</creatorcontrib><creatorcontrib>Khoddami, Sara</creatorcontrib><creatorcontrib>F. Felix, Demian</creatorcontrib><creatorcontrib>Yeh, Han H.</creatorcontrib><creatorcontrib>Luo, Haiming D.</creatorcontrib><creatorcontrib>Moskalev, Igor</creatorcontrib><creatorcontrib>Wang, Qiong</creatorcontrib><creatorcontrib>Wang, Rizhi</creatorcontrib><creatorcontrib>Grecov, Dana</creatorcontrib><creatorcontrib>Fazli, Ladan</creatorcontrib><creatorcontrib>Lange, Dirk</creatorcontrib><creatorcontrib>Kizhakkedathu, Jayachandran N.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS Nanoscience Au</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yazdani-Ahmadabadi, Hossein</au><au>Yu, Kai</au><au>Khoddami, Sara</au><au>F. Felix, Demian</au><au>Yeh, Han H.</au><au>Luo, Haiming D.</au><au>Moskalev, Igor</au><au>Wang, Qiong</au><au>Wang, Rizhi</au><au>Grecov, Dana</au><au>Fazli, Ladan</au><au>Lange, Dirk</au><au>Kizhakkedathu, Jayachandran N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Nanoparticle-Derived Lubricious Antibiofilm Coating for Difficult-to-Coat Medical Devices with Intricate Geometry</atitle><jtitle>ACS Nanoscience Au</jtitle><addtitle>ACS Nanosci. Au</addtitle><date>2023-02-15</date><risdate>2023</risdate><volume>3</volume><issue>1</issue><spage>67</spage><epage>83</epage><pages>67-83</pages><issn>2694-2496</issn><eissn>2694-2496</eissn><abstract>A major medical device-associated complication is the biofilm-related infection post-implantation. One promising approach to prevent this is to coat already commercialized medical devices with effective antibiofilm materials. However, developing a robust high-performance antibiofilm coating on devices with a nonflat geometry remains unmet. Here, we report the development of a facile scalable nanoparticle-based antibiofilm silver composite coating with long-term activity applicable to virtually any objects including difficult-to-coat commercially available medical devices utilizing a catecholic organic–aqueous mixture. Using a screening approach, we have identified a combination of the organic–aqueous buffer mixture which alters polycatecholamine synthesis, nanoparticle formation, and stabilization, resulting in controlled deposition of in situ formed composite silver nanoparticles in the presence of an ultra-high-molecular-weight hydrophilic polymer on diverse objects irrespective of its geometry and chemistry. Methanol-mediated synthesis of polymer–silver composite nanoparticles resulted in a biocompatible lubricious coating with high mechanical durability, long-term silver release (∼90 days), complete inhibition of bacterial adhesion, and excellent killing activity against a diverse range of bacteria over the long term. Coated catheters retained their excellent activity even after exposure to harsh mechanical challenges (rubbing, twisting, and stretching) and storage conditions (&gt;3 months stirring in water). We confirmed its excellent bacteria-killing efficacy (&gt;99.999%) against difficult-to-kill bacteria (Proteus mirabilis) and high biocompatibility using percutaneous catheter infection mice and subcutaneous implant rat models, respectively, in vivo. The developed coating approach opens a new avenue to transform clinically used medical devices (e.g., urinary catheters) to highly infection-resistant devices to prevent and treat implant/device-associated infections.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36820095</pmid><doi>10.1021/acsnanoscienceau.2c00040</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7688-7574</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2694-2496
ispartof ACS Nanoscience Au, 2023-02, Vol.3 (1), p.67-83
issn 2694-2496
2694-2496
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9936578
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
title Robust Nanoparticle-Derived Lubricious Antibiofilm Coating for Difficult-to-Coat Medical Devices with Intricate Geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Nanoparticle-Derived%20Lubricious%20Antibiofilm%20Coating%20for%20Difficult-to-Coat%20Medical%20Devices%20with%20Intricate%20Geometry&rft.jtitle=ACS%20Nanoscience%20Au&rft.au=Yazdani-Ahmadabadi,%20Hossein&rft.date=2023-02-15&rft.volume=3&rft.issue=1&rft.spage=67&rft.epage=83&rft.pages=67-83&rft.issn=2694-2496&rft.eissn=2694-2496&rft_id=info:doi/10.1021/acsnanoscienceau.2c00040&rft_dat=%3Cproquest_pubme%3E2779348328%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779348328&rft_id=info:pmid/36820095&rfr_iscdi=true