Ciliary central apparatus structure reveals mechanisms of microtubule patterning
A pair of extensively modified microtubules form the central apparatus (CA) of the axoneme of most motile cilia, where they regulate ciliary motility. The external surfaces of both CA microtubules are patterned asymmetrically with large protein complexes that repeat every 16 or 32 nm. The compositio...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2022-05, Vol.29 (5), p.483-492 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 492 |
---|---|
container_issue | 5 |
container_start_page | 483 |
container_title | Nature structural & molecular biology |
container_volume | 29 |
creator | Gui, Miao Wang, Xiangli Dutcher, Susan K. Brown, Alan Zhang, Rui |
description | A pair of extensively modified microtubules form the central apparatus (CA) of the axoneme of most motile cilia, where they regulate ciliary motility. The external surfaces of both CA microtubules are patterned asymmetrically with large protein complexes that repeat every 16 or 32 nm. The composition of these projections and the mechanisms that establish asymmetry and longitudinal periodicity are unknown. Here, by determining cryo-EM structures of the CA microtubules, we identify 48 different CA-associated proteins, which in turn reveal mechanisms for asymmetric and periodic protein binding to microtubules. We identify arc-MIPs, a novel class of microtubule inner protein, that bind laterally across protofilaments and remodel tubulin structure and lattice contacts. The binding mechanisms utilized by CA proteins may be generalizable to other microtubule-associated proteins. These structures establish a foundation to elucidate the contributions of individual CA proteins to ciliary motility and ciliopathies.
Here, the authors use cryo-EM to build atomic models of the central apparatus of motile cilia from
Chlamydomonas reinhardtii
to shed light on the mechanism of ciliary motility and corresponding disease mutations in human. |
doi_str_mv | 10.1038/s41594-022-00770-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9930914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2665413625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-49795a48f0fbdceeef7902ed6615a1835a8e3036f7400c4fddd7026a7ba3e2e33</originalsourceid><addsrcrecordid>eNp9kU1PGzEQhq0K1ITQP8ABrcSlly3jr_XupVIVFaiERA_lbDm7s4mj_ao_kPj3NUkaaA-cxtI883reeQm5oPCFAi-vvaCyEjkwlgMoBTn7QOZUCplXVSlPju-Kz8iZ91sAJqXiH8mMp1oC43Pyc2k7a9xzVuMQnOkyM03GmRB95oOLdYgOM4dPaDqf9VhvzGB977OxzXpbuzHEVewwm0wI6AY7rM_JaZtY_HSoC_J48_3X8i6_f7j9sfx2n9dCiZCLSlXSiLKFdtXUiNiqChg2RUGloSWXpkQOvGiVAKhF2zSNAlYYtTIcGXK-IF_3ulNc9dgc1teTs32yo0dj9b-dwW70enzS6RxQUZEEPh8E3Pg7og-6t77GrjMDjtFrVhRSFhSoTOjVf-h2jG5I9naUoLxgLxTbU-ks3jtsj8tQ0C-B6X1gOgWmd4FploYu39o4jvxNKAF8D_jUGtboXv9-R_YPP-yjUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665413625</pqid></control><display><type>article</type><title>Ciliary central apparatus structure reveals mechanisms of microtubule patterning</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Gui, Miao ; Wang, Xiangli ; Dutcher, Susan K. ; Brown, Alan ; Zhang, Rui</creator><creatorcontrib>Gui, Miao ; Wang, Xiangli ; Dutcher, Susan K. ; Brown, Alan ; Zhang, Rui</creatorcontrib><description>A pair of extensively modified microtubules form the central apparatus (CA) of the axoneme of most motile cilia, where they regulate ciliary motility. The external surfaces of both CA microtubules are patterned asymmetrically with large protein complexes that repeat every 16 or 32 nm. The composition of these projections and the mechanisms that establish asymmetry and longitudinal periodicity are unknown. Here, by determining cryo-EM structures of the CA microtubules, we identify 48 different CA-associated proteins, which in turn reveal mechanisms for asymmetric and periodic protein binding to microtubules. We identify arc-MIPs, a novel class of microtubule inner protein, that bind laterally across protofilaments and remodel tubulin structure and lattice contacts. The binding mechanisms utilized by CA proteins may be generalizable to other microtubule-associated proteins. These structures establish a foundation to elucidate the contributions of individual CA proteins to ciliary motility and ciliopathies.
Here, the authors use cryo-EM to build atomic models of the central apparatus of motile cilia from
Chlamydomonas reinhardtii
to shed light on the mechanism of ciliary motility and corresponding disease mutations in human.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-022-00770-2</identifier><identifier>PMID: 35578023</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>101/28 ; 101/58 ; 631/535/1258/1259 ; 631/57/343 ; 631/80/128/1383 ; Asymmetry ; Axoneme - metabolism ; Binding ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Cilia ; Cilia - metabolism ; Life Sciences ; Membrane Biology ; Microtubule-associated proteins ; Microtubule-Associated Proteins - metabolism ; Microtubules - metabolism ; Motility ; Mutation ; Pattern formation ; Periodicity ; Protein Structure ; Proteins ; Tubulin ; Tubulin - metabolism</subject><ispartof>Nature structural & molecular biology, 2022-05, Vol.29 (5), p.483-492</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-49795a48f0fbdceeef7902ed6615a1835a8e3036f7400c4fddd7026a7ba3e2e33</citedby><cites>FETCH-LOGICAL-c474t-49795a48f0fbdceeef7902ed6615a1835a8e3036f7400c4fddd7026a7ba3e2e33</cites><orcidid>0000-0002-0021-0476 ; 0000-0003-3159-9565 ; 0000-0001-5689-5753 ; 0000-0001-9113-8029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-022-00770-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-022-00770-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35578023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gui, Miao</creatorcontrib><creatorcontrib>Wang, Xiangli</creatorcontrib><creatorcontrib>Dutcher, Susan K.</creatorcontrib><creatorcontrib>Brown, Alan</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><title>Ciliary central apparatus structure reveals mechanisms of microtubule patterning</title><title>Nature structural & molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>A pair of extensively modified microtubules form the central apparatus (CA) of the axoneme of most motile cilia, where they regulate ciliary motility. The external surfaces of both CA microtubules are patterned asymmetrically with large protein complexes that repeat every 16 or 32 nm. The composition of these projections and the mechanisms that establish asymmetry and longitudinal periodicity are unknown. Here, by determining cryo-EM structures of the CA microtubules, we identify 48 different CA-associated proteins, which in turn reveal mechanisms for asymmetric and periodic protein binding to microtubules. We identify arc-MIPs, a novel class of microtubule inner protein, that bind laterally across protofilaments and remodel tubulin structure and lattice contacts. The binding mechanisms utilized by CA proteins may be generalizable to other microtubule-associated proteins. These structures establish a foundation to elucidate the contributions of individual CA proteins to ciliary motility and ciliopathies.
Here, the authors use cryo-EM to build atomic models of the central apparatus of motile cilia from
Chlamydomonas reinhardtii
to shed light on the mechanism of ciliary motility and corresponding disease mutations in human.</description><subject>101/28</subject><subject>101/58</subject><subject>631/535/1258/1259</subject><subject>631/57/343</subject><subject>631/80/128/1383</subject><subject>Asymmetry</subject><subject>Axoneme - metabolism</subject><subject>Binding</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Cilia</subject><subject>Cilia - metabolism</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Microtubule-associated proteins</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Microtubules - metabolism</subject><subject>Motility</subject><subject>Mutation</subject><subject>Pattern formation</subject><subject>Periodicity</subject><subject>Protein Structure</subject><subject>Proteins</subject><subject>Tubulin</subject><subject>Tubulin - metabolism</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1PGzEQhq0K1ITQP8ABrcSlly3jr_XupVIVFaiERA_lbDm7s4mj_ao_kPj3NUkaaA-cxtI883reeQm5oPCFAi-vvaCyEjkwlgMoBTn7QOZUCplXVSlPju-Kz8iZ91sAJqXiH8mMp1oC43Pyc2k7a9xzVuMQnOkyM03GmRB95oOLdYgOM4dPaDqf9VhvzGB977OxzXpbuzHEVewwm0wI6AY7rM_JaZtY_HSoC_J48_3X8i6_f7j9sfx2n9dCiZCLSlXSiLKFdtXUiNiqChg2RUGloSWXpkQOvGiVAKhF2zSNAlYYtTIcGXK-IF_3ulNc9dgc1teTs32yo0dj9b-dwW70enzS6RxQUZEEPh8E3Pg7og-6t77GrjMDjtFrVhRSFhSoTOjVf-h2jG5I9naUoLxgLxTbU-ks3jtsj8tQ0C-B6X1gOgWmd4FploYu39o4jvxNKAF8D_jUGtboXv9-R_YPP-yjUw</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Gui, Miao</creator><creator>Wang, Xiangli</creator><creator>Dutcher, Susan K.</creator><creator>Brown, Alan</creator><creator>Zhang, Rui</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0021-0476</orcidid><orcidid>https://orcid.org/0000-0003-3159-9565</orcidid><orcidid>https://orcid.org/0000-0001-5689-5753</orcidid><orcidid>https://orcid.org/0000-0001-9113-8029</orcidid></search><sort><creationdate>20220501</creationdate><title>Ciliary central apparatus structure reveals mechanisms of microtubule patterning</title><author>Gui, Miao ; Wang, Xiangli ; Dutcher, Susan K. ; Brown, Alan ; Zhang, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-49795a48f0fbdceeef7902ed6615a1835a8e3036f7400c4fddd7026a7ba3e2e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>101/28</topic><topic>101/58</topic><topic>631/535/1258/1259</topic><topic>631/57/343</topic><topic>631/80/128/1383</topic><topic>Asymmetry</topic><topic>Axoneme - metabolism</topic><topic>Binding</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Cilia</topic><topic>Cilia - metabolism</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Microtubule-associated proteins</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Microtubules - metabolism</topic><topic>Motility</topic><topic>Mutation</topic><topic>Pattern formation</topic><topic>Periodicity</topic><topic>Protein Structure</topic><topic>Proteins</topic><topic>Tubulin</topic><topic>Tubulin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gui, Miao</creatorcontrib><creatorcontrib>Wang, Xiangli</creatorcontrib><creatorcontrib>Dutcher, Susan K.</creatorcontrib><creatorcontrib>Brown, Alan</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural & molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gui, Miao</au><au>Wang, Xiangli</au><au>Dutcher, Susan K.</au><au>Brown, Alan</au><au>Zhang, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ciliary central apparatus structure reveals mechanisms of microtubule patterning</atitle><jtitle>Nature structural & molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>29</volume><issue>5</issue><spage>483</spage><epage>492</epage><pages>483-492</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>A pair of extensively modified microtubules form the central apparatus (CA) of the axoneme of most motile cilia, where they regulate ciliary motility. The external surfaces of both CA microtubules are patterned asymmetrically with large protein complexes that repeat every 16 or 32 nm. The composition of these projections and the mechanisms that establish asymmetry and longitudinal periodicity are unknown. Here, by determining cryo-EM structures of the CA microtubules, we identify 48 different CA-associated proteins, which in turn reveal mechanisms for asymmetric and periodic protein binding to microtubules. We identify arc-MIPs, a novel class of microtubule inner protein, that bind laterally across protofilaments and remodel tubulin structure and lattice contacts. The binding mechanisms utilized by CA proteins may be generalizable to other microtubule-associated proteins. These structures establish a foundation to elucidate the contributions of individual CA proteins to ciliary motility and ciliopathies.
Here, the authors use cryo-EM to build atomic models of the central apparatus of motile cilia from
Chlamydomonas reinhardtii
to shed light on the mechanism of ciliary motility and corresponding disease mutations in human.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>35578023</pmid><doi>10.1038/s41594-022-00770-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0021-0476</orcidid><orcidid>https://orcid.org/0000-0003-3159-9565</orcidid><orcidid>https://orcid.org/0000-0001-5689-5753</orcidid><orcidid>https://orcid.org/0000-0001-9113-8029</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-9993 |
ispartof | Nature structural & molecular biology, 2022-05, Vol.29 (5), p.483-492 |
issn | 1545-9993 1545-9985 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9930914 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 101/28 101/58 631/535/1258/1259 631/57/343 631/80/128/1383 Asymmetry Axoneme - metabolism Binding Biochemistry Biological Microscopy Biomedical and Life Sciences Cilia Cilia - metabolism Life Sciences Membrane Biology Microtubule-associated proteins Microtubule-Associated Proteins - metabolism Microtubules - metabolism Motility Mutation Pattern formation Periodicity Protein Structure Proteins Tubulin Tubulin - metabolism |
title | Ciliary central apparatus structure reveals mechanisms of microtubule patterning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ciliary%20central%20apparatus%20structure%20reveals%20mechanisms%20of%20microtubule%20patterning&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Gui,%20Miao&rft.date=2022-05-01&rft.volume=29&rft.issue=5&rft.spage=483&rft.epage=492&rft.pages=483-492&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-022-00770-2&rft_dat=%3Cproquest_pubme%3E2665413625%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665413625&rft_id=info:pmid/35578023&rfr_iscdi=true |