Computing the Volume, Surface Area, Mean, and Gaussian Curvatures of Molecules and Their Derivatives

Geometry is crucial in our efforts to comprehend the structures and dynamics of biomolecules. For example, volume, surface area, and integrated mean and Gaussian curvature of the union of balls representing a molecule are used to quantify its interactions with the water surrounding it in the morphom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2023-02, Vol.63 (3), p.973-985
Hauptverfasser: Koehl, Patrice, Akopyan, Arseniy, Edelsbrunner, Herbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 985
container_issue 3
container_start_page 973
container_title Journal of chemical information and modeling
container_volume 63
creator Koehl, Patrice
Akopyan, Arseniy
Edelsbrunner, Herbert
description Geometry is crucial in our efforts to comprehend the structures and dynamics of biomolecules. For example, volume, surface area, and integrated mean and Gaussian curvature of the union of balls representing a molecule are used to quantify its interactions with the water surrounding it in the morphometric implicit solvent models. The Alpha Shape theory provides an accurate and reliable method for computing these geometric measures. In this paper, we derive homogeneous formulas for the expressions of these measures and their derivatives with respect to the atomic coordinates, and we provide algorithms that implement them into a new software package, AlphaMol. The only variables in these formulas are the interatomic distances, making them insensitive to translations and rotations. AlphaMol includes a sequential algorithm and a parallel algorithm. In the parallel version, we partition the atoms of the molecule of interest into 3D rectangular blocks, using a kd-tree algorithm. We then apply the sequential algorithm of AlphaMol to each block, augmented by a buffer zone to account for atoms whose ball representations may partially cover the block. The current parallel version of AlphaMol leads to a 20-fold speed-up compared to an independent serial implementation when using 32 processors. For instance, it takes 31 s to compute the geometric measures and derivatives of each atom in a viral capsid with more than 26 million atoms on 32 Intel processors running at 2.7 GHz. The presence of the buffer zones, however, leads to redundant computations, which ultimately limit the impact of using multiple processors. AlphaMol is available as an OpenSource software.
doi_str_mv 10.1021/acs.jcim.2c01346
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9930125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776201282</sourcerecordid><originalsourceid>FETCH-LOGICAL-a461t-3e873d810fa9f5fd171bae108cf90d925683573bcbe8a209e3b6669a692023cc3</originalsourceid><addsrcrecordid>eNp1kc9r2zAYhkXpaLuu952GoJcekkw_Ytm6DEq6dYOWHdaN3sRn-XOjYFupZAX2309ZkrINdpKEnveRPl5C3nI240zw92DjbGVdPxOWcTlXR-SMF3M91Yo9Hh_2hVan5HWMK8ak1EqckFOplKwkr85Is_D9Oo1ueKLjEukP36UeJ_RbCi1YpNcBYULvEYYJhaGht5BidDDQRQobGFPASH1L732HNnX5sIUelugCvcHgMuI2GN-QVy10ES_26zn5_unjw-Lz9O7r7ZfF9d0U5oqPU4lVKZuKsxZ0W7QNL3kNyFllW80aLQpVyaKUta2xAsE0yloppUFpwYS0Vp6TDzvvOtU9NhaHMUBn1sH1EH4aD878fTO4pXnyG6O1ZFwUWXC1FwT_nDCOpnfRYtfBgD5FI0pVlKWWhc7o5T_oyqcw5PEyVSqRfZXIFNtRNvgYA7Yvn-HMbCs0uUKzrdDsK8yRd38O8RI4dJaByQ74HT08-l_fL1HbqDo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776201282</pqid></control><display><type>article</type><title>Computing the Volume, Surface Area, Mean, and Gaussian Curvatures of Molecules and Their Derivatives</title><source>MEDLINE</source><source>ACS Journals: American Chemical Society Web Editions</source><creator>Koehl, Patrice ; Akopyan, Arseniy ; Edelsbrunner, Herbert</creator><creatorcontrib>Koehl, Patrice ; Akopyan, Arseniy ; Edelsbrunner, Herbert</creatorcontrib><description>Geometry is crucial in our efforts to comprehend the structures and dynamics of biomolecules. For example, volume, surface area, and integrated mean and Gaussian curvature of the union of balls representing a molecule are used to quantify its interactions with the water surrounding it in the morphometric implicit solvent models. The Alpha Shape theory provides an accurate and reliable method for computing these geometric measures. In this paper, we derive homogeneous formulas for the expressions of these measures and their derivatives with respect to the atomic coordinates, and we provide algorithms that implement them into a new software package, AlphaMol. The only variables in these formulas are the interatomic distances, making them insensitive to translations and rotations. AlphaMol includes a sequential algorithm and a parallel algorithm. In the parallel version, we partition the atoms of the molecule of interest into 3D rectangular blocks, using a kd-tree algorithm. We then apply the sequential algorithm of AlphaMol to each block, augmented by a buffer zone to account for atoms whose ball representations may partially cover the block. The current parallel version of AlphaMol leads to a 20-fold speed-up compared to an independent serial implementation when using 32 processors. For instance, it takes 31 s to compute the geometric measures and derivatives of each atom in a viral capsid with more than 26 million atoms on 32 Intel processors running at 2.7 GHz. The presence of the buffer zones, however, leads to redundant computations, which ultimately limit the impact of using multiple processors. AlphaMol is available as an OpenSource software.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.2c01346</identifier><identifier>PMID: 36638318</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Alpha shapes ; Biomolecules ; Buffer zones ; Computation ; Computational Biochemistry ; Processors ; Software ; Software packages ; Solvents ; Surface area ; Translations ; Water</subject><ispartof>Journal of chemical information and modeling, 2023-02, Vol.63 (3), p.973-985</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 13, 2023</rights><rights>2023 American Chemical Society 2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a461t-3e873d810fa9f5fd171bae108cf90d925683573bcbe8a209e3b6669a692023cc3</citedby><cites>FETCH-LOGICAL-a461t-3e873d810fa9f5fd171bae108cf90d925683573bcbe8a209e3b6669a692023cc3</cites><orcidid>0000-0002-0908-068X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.2c01346$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.2c01346$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36638318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koehl, Patrice</creatorcontrib><creatorcontrib>Akopyan, Arseniy</creatorcontrib><creatorcontrib>Edelsbrunner, Herbert</creatorcontrib><title>Computing the Volume, Surface Area, Mean, and Gaussian Curvatures of Molecules and Their Derivatives</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Geometry is crucial in our efforts to comprehend the structures and dynamics of biomolecules. For example, volume, surface area, and integrated mean and Gaussian curvature of the union of balls representing a molecule are used to quantify its interactions with the water surrounding it in the morphometric implicit solvent models. The Alpha Shape theory provides an accurate and reliable method for computing these geometric measures. In this paper, we derive homogeneous formulas for the expressions of these measures and their derivatives with respect to the atomic coordinates, and we provide algorithms that implement them into a new software package, AlphaMol. The only variables in these formulas are the interatomic distances, making them insensitive to translations and rotations. AlphaMol includes a sequential algorithm and a parallel algorithm. In the parallel version, we partition the atoms of the molecule of interest into 3D rectangular blocks, using a kd-tree algorithm. We then apply the sequential algorithm of AlphaMol to each block, augmented by a buffer zone to account for atoms whose ball representations may partially cover the block. The current parallel version of AlphaMol leads to a 20-fold speed-up compared to an independent serial implementation when using 32 processors. For instance, it takes 31 s to compute the geometric measures and derivatives of each atom in a viral capsid with more than 26 million atoms on 32 Intel processors running at 2.7 GHz. The presence of the buffer zones, however, leads to redundant computations, which ultimately limit the impact of using multiple processors. AlphaMol is available as an OpenSource software.</description><subject>Algorithms</subject><subject>Alpha shapes</subject><subject>Biomolecules</subject><subject>Buffer zones</subject><subject>Computation</subject><subject>Computational Biochemistry</subject><subject>Processors</subject><subject>Software</subject><subject>Software packages</subject><subject>Solvents</subject><subject>Surface area</subject><subject>Translations</subject><subject>Water</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9r2zAYhkXpaLuu952GoJcekkw_Ytm6DEq6dYOWHdaN3sRn-XOjYFupZAX2309ZkrINdpKEnveRPl5C3nI240zw92DjbGVdPxOWcTlXR-SMF3M91Yo9Hh_2hVan5HWMK8ak1EqckFOplKwkr85Is_D9Oo1ueKLjEukP36UeJ_RbCi1YpNcBYULvEYYJhaGht5BidDDQRQobGFPASH1L732HNnX5sIUelugCvcHgMuI2GN-QVy10ES_26zn5_unjw-Lz9O7r7ZfF9d0U5oqPU4lVKZuKsxZ0W7QNL3kNyFllW80aLQpVyaKUta2xAsE0yloppUFpwYS0Vp6TDzvvOtU9NhaHMUBn1sH1EH4aD878fTO4pXnyG6O1ZFwUWXC1FwT_nDCOpnfRYtfBgD5FI0pVlKWWhc7o5T_oyqcw5PEyVSqRfZXIFNtRNvgYA7Yvn-HMbCs0uUKzrdDsK8yRd38O8RI4dJaByQ74HT08-l_fL1HbqDo</recordid><startdate>20230213</startdate><enddate>20230213</enddate><creator>Koehl, Patrice</creator><creator>Akopyan, Arseniy</creator><creator>Edelsbrunner, Herbert</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0908-068X</orcidid></search><sort><creationdate>20230213</creationdate><title>Computing the Volume, Surface Area, Mean, and Gaussian Curvatures of Molecules and Their Derivatives</title><author>Koehl, Patrice ; Akopyan, Arseniy ; Edelsbrunner, Herbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a461t-3e873d810fa9f5fd171bae108cf90d925683573bcbe8a209e3b6669a692023cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Alpha shapes</topic><topic>Biomolecules</topic><topic>Buffer zones</topic><topic>Computation</topic><topic>Computational Biochemistry</topic><topic>Processors</topic><topic>Software</topic><topic>Software packages</topic><topic>Solvents</topic><topic>Surface area</topic><topic>Translations</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koehl, Patrice</creatorcontrib><creatorcontrib>Akopyan, Arseniy</creatorcontrib><creatorcontrib>Edelsbrunner, Herbert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koehl, Patrice</au><au>Akopyan, Arseniy</au><au>Edelsbrunner, Herbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing the Volume, Surface Area, Mean, and Gaussian Curvatures of Molecules and Their Derivatives</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2023-02-13</date><risdate>2023</risdate><volume>63</volume><issue>3</issue><spage>973</spage><epage>985</epage><pages>973-985</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Geometry is crucial in our efforts to comprehend the structures and dynamics of biomolecules. For example, volume, surface area, and integrated mean and Gaussian curvature of the union of balls representing a molecule are used to quantify its interactions with the water surrounding it in the morphometric implicit solvent models. The Alpha Shape theory provides an accurate and reliable method for computing these geometric measures. In this paper, we derive homogeneous formulas for the expressions of these measures and their derivatives with respect to the atomic coordinates, and we provide algorithms that implement them into a new software package, AlphaMol. The only variables in these formulas are the interatomic distances, making them insensitive to translations and rotations. AlphaMol includes a sequential algorithm and a parallel algorithm. In the parallel version, we partition the atoms of the molecule of interest into 3D rectangular blocks, using a kd-tree algorithm. We then apply the sequential algorithm of AlphaMol to each block, augmented by a buffer zone to account for atoms whose ball representations may partially cover the block. The current parallel version of AlphaMol leads to a 20-fold speed-up compared to an independent serial implementation when using 32 processors. For instance, it takes 31 s to compute the geometric measures and derivatives of each atom in a viral capsid with more than 26 million atoms on 32 Intel processors running at 2.7 GHz. The presence of the buffer zones, however, leads to redundant computations, which ultimately limit the impact of using multiple processors. AlphaMol is available as an OpenSource software.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36638318</pmid><doi>10.1021/acs.jcim.2c01346</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0908-068X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2023-02, Vol.63 (3), p.973-985
issn 1549-9596
1549-960X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9930125
source MEDLINE; ACS Journals: American Chemical Society Web Editions
subjects Algorithms
Alpha shapes
Biomolecules
Buffer zones
Computation
Computational Biochemistry
Processors
Software
Software packages
Solvents
Surface area
Translations
Water
title Computing the Volume, Surface Area, Mean, and Gaussian Curvatures of Molecules and Their Derivatives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A51%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20the%20Volume,%20Surface%20Area,%20Mean,%20and%20Gaussian%20Curvatures%20of%20Molecules%20and%20Their%20Derivatives&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Koehl,%20Patrice&rft.date=2023-02-13&rft.volume=63&rft.issue=3&rft.spage=973&rft.epage=985&rft.pages=973-985&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.2c01346&rft_dat=%3Cproquest_pubme%3E2776201282%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776201282&rft_id=info:pmid/36638318&rfr_iscdi=true