Supramolecular Phenylalanine-Derived Hydrogels for the Sustained Release of Functional Proteins

Protein-based therapeutics have emerged as next-generation pharmaceutical agents for oncology, bone regeneration, autoimmune disorders, viral infections, and other diseases. The clinical application of protein therapeutics has been impeded by pharmacokinetic and pharmacodynamic challenges including...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS biomaterials science & engineering 2023-02, Vol.9 (2), p.784-796
Hauptverfasser: Jagrosse, Melissa L., Agredo, Pamela, Abraham, Brittany L., Toriki, Ethan S., Nilsson, Bradley L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 796
container_issue 2
container_start_page 784
container_title ACS biomaterials science & engineering
container_volume 9
creator Jagrosse, Melissa L.
Agredo, Pamela
Abraham, Brittany L.
Toriki, Ethan S.
Nilsson, Bradley L.
description Protein-based therapeutics have emerged as next-generation pharmaceutical agents for oncology, bone regeneration, autoimmune disorders, viral infections, and other diseases. The clinical application of protein therapeutics has been impeded by pharmacokinetic and pharmacodynamic challenges including off-target toxicity, rapid clearance, and drug stability. Strategies for the localized and sustained delivery of protein therapeutics have shown promise in addressing these challenges. Hydrogels are critical materials that enable these delivery strategies. Supramolecular hydrogels composed of self-assembled materials have demonstrated biocompatibility advantages over polymer hydrogels, with peptide and protein-based gels showing strong potential. However, cost is a significant drawback of peptide-based supramolecular hydrogels. Supramolecular hydrogels composed of inexpensive low-molecular-weight (LMW) gelators, including modified amino acid derivatives, have been reported as viable alternatives to peptide-based materials. Herein, we report the encapsulation and release of proteins from supramolecular hydrogels composed of perfluorinated fluorenylmethyloxcarbonyl-modified phenylalanine (Fmoc-F5-Phe-DAP). Specifically, we demonstrate release of four model proteins (ribonuclease A (RNase A), trypsin inhibitor (TI), bovine serum albumin (BSA), and human immunoglobulin G (IgG)) from these hydrogels. The emergent viscoelastic properties of these materials are characterized, and the functional and time-dependent release of proteins from the hydrogels is demonstrated. In addition, it is shown that the properties of the aqueous solution used for hydrogel formulation have a significant influence on the in vitro release profiles, as a function of the isoelectric point and molecular weight of the protein payloads. These studies collectively validate that this class of supramolecular LMW hydrogel possesses the requisite properties for the sustained and localized release of protein therapeutics.
doi_str_mv 10.1021/acsbiomaterials.2c01299
format Article
fullrecord <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9930093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c47791544</sourcerecordid><originalsourceid>FETCH-LOGICAL-a461t-d638defa80a258c8f4cce3c647d51528cfc2f2fff467ad11fa914d06dce6a1ba3</originalsourceid><addsrcrecordid>eNqFkN1KAzEQhYMoKuoraF5gNT_b3c2NINWqUFD8uQ7TZNKupElJdoW-vStVqd54NcPMOd8Mh5Azzs45E_wCTJ61cQkdphZ8PheGcaHUDjkUspaFaupmd6s_ICc5vzHGuGxGZVnukwNZVUoKrg6Jfu5XCZbRo-k9JPq4wLD24CG0AYvr4cI7Wnq3tinO0WfqYqLdAulznzsYJJY-oUfISKOjkz6Yro0BPH1MscM25GOy54Yf8eSrHpHXyc3L-K6YPtzej6-mBZQV7wpbycaig4aBGDWmcaUxKE1V1nbER6IxzggnnHNlVYPl3IHipWWVNVgBn4E8Ipcb7qqfLXEYhy6B16vULiGtdYRW_96EdqHn8V0rJRlTcgDUG4BJMeeE7sfLmf6MXf-JXX_FPjhPt0__-L5DHgRyIxgI-i32KXza_8N-AOFnmd4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Supramolecular Phenylalanine-Derived Hydrogels for the Sustained Release of Functional Proteins</title><source>MEDLINE</source><source>ACS Publications</source><creator>Jagrosse, Melissa L. ; Agredo, Pamela ; Abraham, Brittany L. ; Toriki, Ethan S. ; Nilsson, Bradley L.</creator><creatorcontrib>Jagrosse, Melissa L. ; Agredo, Pamela ; Abraham, Brittany L. ; Toriki, Ethan S. ; Nilsson, Bradley L.</creatorcontrib><description>Protein-based therapeutics have emerged as next-generation pharmaceutical agents for oncology, bone regeneration, autoimmune disorders, viral infections, and other diseases. The clinical application of protein therapeutics has been impeded by pharmacokinetic and pharmacodynamic challenges including off-target toxicity, rapid clearance, and drug stability. Strategies for the localized and sustained delivery of protein therapeutics have shown promise in addressing these challenges. Hydrogels are critical materials that enable these delivery strategies. Supramolecular hydrogels composed of self-assembled materials have demonstrated biocompatibility advantages over polymer hydrogels, with peptide and protein-based gels showing strong potential. However, cost is a significant drawback of peptide-based supramolecular hydrogels. Supramolecular hydrogels composed of inexpensive low-molecular-weight (LMW) gelators, including modified amino acid derivatives, have been reported as viable alternatives to peptide-based materials. Herein, we report the encapsulation and release of proteins from supramolecular hydrogels composed of perfluorinated fluorenylmethyloxcarbonyl-modified phenylalanine (Fmoc-F5-Phe-DAP). Specifically, we demonstrate release of four model proteins (ribonuclease A (RNase A), trypsin inhibitor (TI), bovine serum albumin (BSA), and human immunoglobulin G (IgG)) from these hydrogels. The emergent viscoelastic properties of these materials are characterized, and the functional and time-dependent release of proteins from the hydrogels is demonstrated. In addition, it is shown that the properties of the aqueous solution used for hydrogel formulation have a significant influence on the in vitro release profiles, as a function of the isoelectric point and molecular weight of the protein payloads. These studies collectively validate that this class of supramolecular LMW hydrogel possesses the requisite properties for the sustained and localized release of protein therapeutics.</description><identifier>ISSN: 2373-9878</identifier><identifier>EISSN: 2373-9878</identifier><identifier>DOI: 10.1021/acsbiomaterials.2c01299</identifier><identifier>PMID: 36693219</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Controlled Release and Delivery Systems ; Delayed-Action Preparations - pharmacology ; Humans ; Hydrogels - chemistry ; Peptides - chemistry ; Phenylalanine - chemistry ; Proteins - therapeutic use</subject><ispartof>ACS biomaterials science &amp; engineering, 2023-02, Vol.9 (2), p.784-796</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a461t-d638defa80a258c8f4cce3c647d51528cfc2f2fff467ad11fa914d06dce6a1ba3</citedby><cites>FETCH-LOGICAL-a461t-d638defa80a258c8f4cce3c647d51528cfc2f2fff467ad11fa914d06dce6a1ba3</cites><orcidid>0000-0001-9147-8541 ; 0000-0003-1193-3693 ; 0000-0002-6009-0023 ; 0000-0001-6843-2238 ; 0000-0003-2742-9192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsbiomaterials.2c01299$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsbiomaterials.2c01299$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36693219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jagrosse, Melissa L.</creatorcontrib><creatorcontrib>Agredo, Pamela</creatorcontrib><creatorcontrib>Abraham, Brittany L.</creatorcontrib><creatorcontrib>Toriki, Ethan S.</creatorcontrib><creatorcontrib>Nilsson, Bradley L.</creatorcontrib><title>Supramolecular Phenylalanine-Derived Hydrogels for the Sustained Release of Functional Proteins</title><title>ACS biomaterials science &amp; engineering</title><addtitle>ACS Biomater. Sci. Eng</addtitle><description>Protein-based therapeutics have emerged as next-generation pharmaceutical agents for oncology, bone regeneration, autoimmune disorders, viral infections, and other diseases. The clinical application of protein therapeutics has been impeded by pharmacokinetic and pharmacodynamic challenges including off-target toxicity, rapid clearance, and drug stability. Strategies for the localized and sustained delivery of protein therapeutics have shown promise in addressing these challenges. Hydrogels are critical materials that enable these delivery strategies. Supramolecular hydrogels composed of self-assembled materials have demonstrated biocompatibility advantages over polymer hydrogels, with peptide and protein-based gels showing strong potential. However, cost is a significant drawback of peptide-based supramolecular hydrogels. Supramolecular hydrogels composed of inexpensive low-molecular-weight (LMW) gelators, including modified amino acid derivatives, have been reported as viable alternatives to peptide-based materials. Herein, we report the encapsulation and release of proteins from supramolecular hydrogels composed of perfluorinated fluorenylmethyloxcarbonyl-modified phenylalanine (Fmoc-F5-Phe-DAP). Specifically, we demonstrate release of four model proteins (ribonuclease A (RNase A), trypsin inhibitor (TI), bovine serum albumin (BSA), and human immunoglobulin G (IgG)) from these hydrogels. The emergent viscoelastic properties of these materials are characterized, and the functional and time-dependent release of proteins from the hydrogels is demonstrated. In addition, it is shown that the properties of the aqueous solution used for hydrogel formulation have a significant influence on the in vitro release profiles, as a function of the isoelectric point and molecular weight of the protein payloads. These studies collectively validate that this class of supramolecular LMW hydrogel possesses the requisite properties for the sustained and localized release of protein therapeutics.</description><subject>Controlled Release and Delivery Systems</subject><subject>Delayed-Action Preparations - pharmacology</subject><subject>Humans</subject><subject>Hydrogels - chemistry</subject><subject>Peptides - chemistry</subject><subject>Phenylalanine - chemistry</subject><subject>Proteins - therapeutic use</subject><issn>2373-9878</issn><issn>2373-9878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkN1KAzEQhYMoKuoraF5gNT_b3c2NINWqUFD8uQ7TZNKupElJdoW-vStVqd54NcPMOd8Mh5Azzs45E_wCTJ61cQkdphZ8PheGcaHUDjkUspaFaupmd6s_ICc5vzHGuGxGZVnukwNZVUoKrg6Jfu5XCZbRo-k9JPq4wLD24CG0AYvr4cI7Wnq3tinO0WfqYqLdAulznzsYJJY-oUfISKOjkz6Yro0BPH1MscM25GOy54Yf8eSrHpHXyc3L-K6YPtzej6-mBZQV7wpbycaig4aBGDWmcaUxKE1V1nbER6IxzggnnHNlVYPl3IHipWWVNVgBn4E8Ipcb7qqfLXEYhy6B16vULiGtdYRW_96EdqHn8V0rJRlTcgDUG4BJMeeE7sfLmf6MXf-JXX_FPjhPt0__-L5DHgRyIxgI-i32KXza_8N-AOFnmd4</recordid><startdate>20230213</startdate><enddate>20230213</enddate><creator>Jagrosse, Melissa L.</creator><creator>Agredo, Pamela</creator><creator>Abraham, Brittany L.</creator><creator>Toriki, Ethan S.</creator><creator>Nilsson, Bradley L.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9147-8541</orcidid><orcidid>https://orcid.org/0000-0003-1193-3693</orcidid><orcidid>https://orcid.org/0000-0002-6009-0023</orcidid><orcidid>https://orcid.org/0000-0001-6843-2238</orcidid><orcidid>https://orcid.org/0000-0003-2742-9192</orcidid></search><sort><creationdate>20230213</creationdate><title>Supramolecular Phenylalanine-Derived Hydrogels for the Sustained Release of Functional Proteins</title><author>Jagrosse, Melissa L. ; Agredo, Pamela ; Abraham, Brittany L. ; Toriki, Ethan S. ; Nilsson, Bradley L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a461t-d638defa80a258c8f4cce3c647d51528cfc2f2fff467ad11fa914d06dce6a1ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Controlled Release and Delivery Systems</topic><topic>Delayed-Action Preparations - pharmacology</topic><topic>Humans</topic><topic>Hydrogels - chemistry</topic><topic>Peptides - chemistry</topic><topic>Phenylalanine - chemistry</topic><topic>Proteins - therapeutic use</topic><toplevel>online_resources</toplevel><creatorcontrib>Jagrosse, Melissa L.</creatorcontrib><creatorcontrib>Agredo, Pamela</creatorcontrib><creatorcontrib>Abraham, Brittany L.</creatorcontrib><creatorcontrib>Toriki, Ethan S.</creatorcontrib><creatorcontrib>Nilsson, Bradley L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS biomaterials science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jagrosse, Melissa L.</au><au>Agredo, Pamela</au><au>Abraham, Brittany L.</au><au>Toriki, Ethan S.</au><au>Nilsson, Bradley L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supramolecular Phenylalanine-Derived Hydrogels for the Sustained Release of Functional Proteins</atitle><jtitle>ACS biomaterials science &amp; engineering</jtitle><addtitle>ACS Biomater. Sci. Eng</addtitle><date>2023-02-13</date><risdate>2023</risdate><volume>9</volume><issue>2</issue><spage>784</spage><epage>796</epage><pages>784-796</pages><issn>2373-9878</issn><eissn>2373-9878</eissn><abstract>Protein-based therapeutics have emerged as next-generation pharmaceutical agents for oncology, bone regeneration, autoimmune disorders, viral infections, and other diseases. The clinical application of protein therapeutics has been impeded by pharmacokinetic and pharmacodynamic challenges including off-target toxicity, rapid clearance, and drug stability. Strategies for the localized and sustained delivery of protein therapeutics have shown promise in addressing these challenges. Hydrogels are critical materials that enable these delivery strategies. Supramolecular hydrogels composed of self-assembled materials have demonstrated biocompatibility advantages over polymer hydrogels, with peptide and protein-based gels showing strong potential. However, cost is a significant drawback of peptide-based supramolecular hydrogels. Supramolecular hydrogels composed of inexpensive low-molecular-weight (LMW) gelators, including modified amino acid derivatives, have been reported as viable alternatives to peptide-based materials. Herein, we report the encapsulation and release of proteins from supramolecular hydrogels composed of perfluorinated fluorenylmethyloxcarbonyl-modified phenylalanine (Fmoc-F5-Phe-DAP). Specifically, we demonstrate release of four model proteins (ribonuclease A (RNase A), trypsin inhibitor (TI), bovine serum albumin (BSA), and human immunoglobulin G (IgG)) from these hydrogels. The emergent viscoelastic properties of these materials are characterized, and the functional and time-dependent release of proteins from the hydrogels is demonstrated. In addition, it is shown that the properties of the aqueous solution used for hydrogel formulation have a significant influence on the in vitro release profiles, as a function of the isoelectric point and molecular weight of the protein payloads. These studies collectively validate that this class of supramolecular LMW hydrogel possesses the requisite properties for the sustained and localized release of protein therapeutics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36693219</pmid><doi>10.1021/acsbiomaterials.2c01299</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9147-8541</orcidid><orcidid>https://orcid.org/0000-0003-1193-3693</orcidid><orcidid>https://orcid.org/0000-0002-6009-0023</orcidid><orcidid>https://orcid.org/0000-0001-6843-2238</orcidid><orcidid>https://orcid.org/0000-0003-2742-9192</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2373-9878
ispartof ACS biomaterials science & engineering, 2023-02, Vol.9 (2), p.784-796
issn 2373-9878
2373-9878
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9930093
source MEDLINE; ACS Publications
subjects Controlled Release and Delivery Systems
Delayed-Action Preparations - pharmacology
Humans
Hydrogels - chemistry
Peptides - chemistry
Phenylalanine - chemistry
Proteins - therapeutic use
title Supramolecular Phenylalanine-Derived Hydrogels for the Sustained Release of Functional Proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supramolecular%20Phenylalanine-Derived%20Hydrogels%20for%20the%20Sustained%20Release%20of%20Functional%20Proteins&rft.jtitle=ACS%20biomaterials%20science%20&%20engineering&rft.au=Jagrosse,%20Melissa%20L.&rft.date=2023-02-13&rft.volume=9&rft.issue=2&rft.spage=784&rft.epage=796&rft.pages=784-796&rft.issn=2373-9878&rft.eissn=2373-9878&rft_id=info:doi/10.1021/acsbiomaterials.2c01299&rft_dat=%3Cacs_pubme%3Ec47791544%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36693219&rfr_iscdi=true