Secured Nanosynthesis–Deposition Aerosol Process for Composite Thin Films Incorporating Highly Dispersed Nanoparticles

Application of nanocomposites in daily life requires not only small nanoparticles (NPs) well dispersed in a matrix, but also a manufacturing process that is mindful of the operator and the environment. Avoiding any exposure to NPs is one such way, and direct liquid reaction‐injection (DLRI) aims to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2023-02, Vol.10 (5), p.e2204929-n/a
Hauptverfasser: Carnide, Guillaume, Champouret, Yohan, Valappil, Divyendu, Vahlas, Constantin, Mingotaud, Anne‐Françoise, Clergereaux, Richard, Kahn, Myrtil L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page e2204929
container_title Advanced science
container_volume 10
creator Carnide, Guillaume
Champouret, Yohan
Valappil, Divyendu
Vahlas, Constantin
Mingotaud, Anne‐Françoise
Clergereaux, Richard
Kahn, Myrtil L.
description Application of nanocomposites in daily life requires not only small nanoparticles (NPs) well dispersed in a matrix, but also a manufacturing process that is mindful of the operator and the environment. Avoiding any exposure to NPs is one such way, and direct liquid reaction‐injection (DLRI) aims to fulfill this need. DLRI is based on the controlled in situ synthesis of NPs from the decomposition of suitable organometallic precursors in conditions that are compatible with a pulsed injection mode of an aerosol into a downstream process. Coupled with low‐pressure plasma, DLRI produces nanocomposite with homogeneously well‐dispersed small nanoparticles that in the particular case of ZnO‐DLC nanocomposite exhibit unique properties. DLRI favorably compares with the direct liquid injection of ex situ formed NPs. The exothermic hydrolysis reaction of the organometallic precursor at the droplet‐gas interface leads to the injection of small and highly dispersed NPs and, consequently, the deposition of fine and controlled distribution in the nanocomposite. The scope of DLRI nanosynthesis has been extended to several metal oxides such as zinc, tin, tungsten, and copper to generalize the concept. Hence, DLRI is an attractive method to synthesize, inject, and deposit nanoparticles and meets the prevention and atom economy requirements of green chemistry. Direct liquid reaction‐injection (DLRI) is an innovative approach combining the safe‐by‐design in situ synthesis of NPs prior to their direct injection as an aerosol into a downstream process. DLRI is a secured general synthetic methodology adapted to the formation of nanocomposites. Additionally, DLRI meets several contemporary requirements of green chemistry, namely prevention of exposure to NPs and atom economy.
doi_str_mv 10.1002/advs.202204929
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9929256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755804658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4973-3c3e0ea013c52fa5362016cce6839f260879d6ccffc39dda19d319070040e4613</originalsourceid><addsrcrecordid>eNqFkk1vEzEQhlcIRKvSK0dkiQs9JPhzd31BihJKKkWA1MLVMt7ZrKtde7F3Q3Prf-Af8ktwSIhKL5z8Mc-8rz0zWfaS4CnBmL7V1SZOKaYUc0nlk-yUEllOWMn50wf7k-w8xluMMRGs4KR8np2wXFApBT_N7q7BjAEq9FE7H7duaCDa-Ov-5wJ6H-1gvUMzCD76Fn0O3kCMqPYBzX33Jw7oprEOXdq2i-jKGR96H_Rg3Rot7bppt2hhYw8hHix6HQZrWogvsme1biOcH9az7Mvl-5v5crL69OFqPltNDJcFmzDDAIPGhBlBay1YTjHJjYG8ZLKmOS4LWaVzXRsmq0oTWTEicYExx8Bzws6yd3vdfvzWQWXADUG3qg-202GrvLbq34izjVr7jZKppFTkSeBiL9A8SlvOVmp3h5kkMi_oZmf25mAW_PcR4qA6Gw20rXbgx6hoIUSJeS7KhL5-hN76MbhUikQVOZWMMJao6Z4yqQUxQH18AcFqNwNqNwPqOAMp4dXD7x7xvx1PAN8DP2wL2__Iqdni6zWXgrHfQG-_nA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776293133</pqid></control><display><type>article</type><title>Secured Nanosynthesis–Deposition Aerosol Process for Composite Thin Films Incorporating Highly Dispersed Nanoparticles</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Carnide, Guillaume ; Champouret, Yohan ; Valappil, Divyendu ; Vahlas, Constantin ; Mingotaud, Anne‐Françoise ; Clergereaux, Richard ; Kahn, Myrtil L.</creator><creatorcontrib>Carnide, Guillaume ; Champouret, Yohan ; Valappil, Divyendu ; Vahlas, Constantin ; Mingotaud, Anne‐Françoise ; Clergereaux, Richard ; Kahn, Myrtil L.</creatorcontrib><description>Application of nanocomposites in daily life requires not only small nanoparticles (NPs) well dispersed in a matrix, but also a manufacturing process that is mindful of the operator and the environment. Avoiding any exposure to NPs is one such way, and direct liquid reaction‐injection (DLRI) aims to fulfill this need. DLRI is based on the controlled in situ synthesis of NPs from the decomposition of suitable organometallic precursors in conditions that are compatible with a pulsed injection mode of an aerosol into a downstream process. Coupled with low‐pressure plasma, DLRI produces nanocomposite with homogeneously well‐dispersed small nanoparticles that in the particular case of ZnO‐DLC nanocomposite exhibit unique properties. DLRI favorably compares with the direct liquid injection of ex situ formed NPs. The exothermic hydrolysis reaction of the organometallic precursor at the droplet‐gas interface leads to the injection of small and highly dispersed NPs and, consequently, the deposition of fine and controlled distribution in the nanocomposite. The scope of DLRI nanosynthesis has been extended to several metal oxides such as zinc, tin, tungsten, and copper to generalize the concept. Hence, DLRI is an attractive method to synthesize, inject, and deposit nanoparticles and meets the prevention and atom economy requirements of green chemistry. Direct liquid reaction‐injection (DLRI) is an innovative approach combining the safe‐by‐design in situ synthesis of NPs prior to their direct injection as an aerosol into a downstream process. DLRI is a secured general synthetic methodology adapted to the formation of nanocomposites. Additionally, DLRI meets several contemporary requirements of green chemistry, namely prevention of exposure to NPs and atom economy.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202204929</identifier><identifier>PMID: 36529954</identifier><language>eng</language><publisher>Germany: John Wiley &amp; Sons, Inc</publisher><subject>Aerosols ; By products ; Chemical Sciences ; Chemical vapor deposition ; coatings ; Composite materials ; Ligands ; metal oxide ; Nanocomposites ; Nanoparticles ; Optical properties ; organometallic chemistry ; safe‐by‐design aerosol ; Thin films</subject><ispartof>Advanced science, 2023-02, Vol.10 (5), p.e2204929-n/a</ispartof><rights>2022 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Advanced Science published by Wiley-VCH GmbH.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4973-3c3e0ea013c52fa5362016cce6839f260879d6ccffc39dda19d319070040e4613</citedby><cites>FETCH-LOGICAL-c4973-3c3e0ea013c52fa5362016cce6839f260879d6ccffc39dda19d319070040e4613</cites><orcidid>0000-0003-3079-5759 ; 0000-0001-8014-6154 ; 0000-0001-5911-0296 ; 0000-0001-7873-845X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929256/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929256/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36529954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03919672$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Carnide, Guillaume</creatorcontrib><creatorcontrib>Champouret, Yohan</creatorcontrib><creatorcontrib>Valappil, Divyendu</creatorcontrib><creatorcontrib>Vahlas, Constantin</creatorcontrib><creatorcontrib>Mingotaud, Anne‐Françoise</creatorcontrib><creatorcontrib>Clergereaux, Richard</creatorcontrib><creatorcontrib>Kahn, Myrtil L.</creatorcontrib><title>Secured Nanosynthesis–Deposition Aerosol Process for Composite Thin Films Incorporating Highly Dispersed Nanoparticles</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Application of nanocomposites in daily life requires not only small nanoparticles (NPs) well dispersed in a matrix, but also a manufacturing process that is mindful of the operator and the environment. Avoiding any exposure to NPs is one such way, and direct liquid reaction‐injection (DLRI) aims to fulfill this need. DLRI is based on the controlled in situ synthesis of NPs from the decomposition of suitable organometallic precursors in conditions that are compatible with a pulsed injection mode of an aerosol into a downstream process. Coupled with low‐pressure plasma, DLRI produces nanocomposite with homogeneously well‐dispersed small nanoparticles that in the particular case of ZnO‐DLC nanocomposite exhibit unique properties. DLRI favorably compares with the direct liquid injection of ex situ formed NPs. The exothermic hydrolysis reaction of the organometallic precursor at the droplet‐gas interface leads to the injection of small and highly dispersed NPs and, consequently, the deposition of fine and controlled distribution in the nanocomposite. The scope of DLRI nanosynthesis has been extended to several metal oxides such as zinc, tin, tungsten, and copper to generalize the concept. Hence, DLRI is an attractive method to synthesize, inject, and deposit nanoparticles and meets the prevention and atom economy requirements of green chemistry. Direct liquid reaction‐injection (DLRI) is an innovative approach combining the safe‐by‐design in situ synthesis of NPs prior to their direct injection as an aerosol into a downstream process. DLRI is a secured general synthetic methodology adapted to the formation of nanocomposites. Additionally, DLRI meets several contemporary requirements of green chemistry, namely prevention of exposure to NPs and atom economy.</description><subject>Aerosols</subject><subject>By products</subject><subject>Chemical Sciences</subject><subject>Chemical vapor deposition</subject><subject>coatings</subject><subject>Composite materials</subject><subject>Ligands</subject><subject>metal oxide</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Optical properties</subject><subject>organometallic chemistry</subject><subject>safe‐by‐design aerosol</subject><subject>Thin films</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkk1vEzEQhlcIRKvSK0dkiQs9JPhzd31BihJKKkWA1MLVMt7ZrKtde7F3Q3Prf-Af8ktwSIhKL5z8Mc-8rz0zWfaS4CnBmL7V1SZOKaYUc0nlk-yUEllOWMn50wf7k-w8xluMMRGs4KR8np2wXFApBT_N7q7BjAEq9FE7H7duaCDa-Ov-5wJ6H-1gvUMzCD76Fn0O3kCMqPYBzX33Jw7oprEOXdq2i-jKGR96H_Rg3Rot7bppt2hhYw8hHix6HQZrWogvsme1biOcH9az7Mvl-5v5crL69OFqPltNDJcFmzDDAIPGhBlBay1YTjHJjYG8ZLKmOS4LWaVzXRsmq0oTWTEicYExx8Bzws6yd3vdfvzWQWXADUG3qg-202GrvLbq34izjVr7jZKppFTkSeBiL9A8SlvOVmp3h5kkMi_oZmf25mAW_PcR4qA6Gw20rXbgx6hoIUSJeS7KhL5-hN76MbhUikQVOZWMMJao6Z4yqQUxQH18AcFqNwNqNwPqOAMp4dXD7x7xvx1PAN8DP2wL2__Iqdni6zWXgrHfQG-_nA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Carnide, Guillaume</creator><creator>Champouret, Yohan</creator><creator>Valappil, Divyendu</creator><creator>Vahlas, Constantin</creator><creator>Mingotaud, Anne‐Françoise</creator><creator>Clergereaux, Richard</creator><creator>Kahn, Myrtil L.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Open Access</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3079-5759</orcidid><orcidid>https://orcid.org/0000-0001-8014-6154</orcidid><orcidid>https://orcid.org/0000-0001-5911-0296</orcidid><orcidid>https://orcid.org/0000-0001-7873-845X</orcidid></search><sort><creationdate>20230201</creationdate><title>Secured Nanosynthesis–Deposition Aerosol Process for Composite Thin Films Incorporating Highly Dispersed Nanoparticles</title><author>Carnide, Guillaume ; Champouret, Yohan ; Valappil, Divyendu ; Vahlas, Constantin ; Mingotaud, Anne‐Françoise ; Clergereaux, Richard ; Kahn, Myrtil L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4973-3c3e0ea013c52fa5362016cce6839f260879d6ccffc39dda19d319070040e4613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerosols</topic><topic>By products</topic><topic>Chemical Sciences</topic><topic>Chemical vapor deposition</topic><topic>coatings</topic><topic>Composite materials</topic><topic>Ligands</topic><topic>metal oxide</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Optical properties</topic><topic>organometallic chemistry</topic><topic>safe‐by‐design aerosol</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carnide, Guillaume</creatorcontrib><creatorcontrib>Champouret, Yohan</creatorcontrib><creatorcontrib>Valappil, Divyendu</creatorcontrib><creatorcontrib>Vahlas, Constantin</creatorcontrib><creatorcontrib>Mingotaud, Anne‐Françoise</creatorcontrib><creatorcontrib>Clergereaux, Richard</creatorcontrib><creatorcontrib>Kahn, Myrtil L.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carnide, Guillaume</au><au>Champouret, Yohan</au><au>Valappil, Divyendu</au><au>Vahlas, Constantin</au><au>Mingotaud, Anne‐Françoise</au><au>Clergereaux, Richard</au><au>Kahn, Myrtil L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secured Nanosynthesis–Deposition Aerosol Process for Composite Thin Films Incorporating Highly Dispersed Nanoparticles</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>10</volume><issue>5</issue><spage>e2204929</spage><epage>n/a</epage><pages>e2204929-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Application of nanocomposites in daily life requires not only small nanoparticles (NPs) well dispersed in a matrix, but also a manufacturing process that is mindful of the operator and the environment. Avoiding any exposure to NPs is one such way, and direct liquid reaction‐injection (DLRI) aims to fulfill this need. DLRI is based on the controlled in situ synthesis of NPs from the decomposition of suitable organometallic precursors in conditions that are compatible with a pulsed injection mode of an aerosol into a downstream process. Coupled with low‐pressure plasma, DLRI produces nanocomposite with homogeneously well‐dispersed small nanoparticles that in the particular case of ZnO‐DLC nanocomposite exhibit unique properties. DLRI favorably compares with the direct liquid injection of ex situ formed NPs. The exothermic hydrolysis reaction of the organometallic precursor at the droplet‐gas interface leads to the injection of small and highly dispersed NPs and, consequently, the deposition of fine and controlled distribution in the nanocomposite. The scope of DLRI nanosynthesis has been extended to several metal oxides such as zinc, tin, tungsten, and copper to generalize the concept. Hence, DLRI is an attractive method to synthesize, inject, and deposit nanoparticles and meets the prevention and atom economy requirements of green chemistry. Direct liquid reaction‐injection (DLRI) is an innovative approach combining the safe‐by‐design in situ synthesis of NPs prior to their direct injection as an aerosol into a downstream process. DLRI is a secured general synthetic methodology adapted to the formation of nanocomposites. Additionally, DLRI meets several contemporary requirements of green chemistry, namely prevention of exposure to NPs and atom economy.</abstract><cop>Germany</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36529954</pmid><doi>10.1002/advs.202204929</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3079-5759</orcidid><orcidid>https://orcid.org/0000-0001-8014-6154</orcidid><orcidid>https://orcid.org/0000-0001-5911-0296</orcidid><orcidid>https://orcid.org/0000-0001-7873-845X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2023-02, Vol.10 (5), p.e2204929-n/a
issn 2198-3844
2198-3844
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9929256
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Aerosols
By products
Chemical Sciences
Chemical vapor deposition
coatings
Composite materials
Ligands
metal oxide
Nanocomposites
Nanoparticles
Optical properties
organometallic chemistry
safe‐by‐design aerosol
Thin films
title Secured Nanosynthesis–Deposition Aerosol Process for Composite Thin Films Incorporating Highly Dispersed Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secured%20Nanosynthesis%E2%80%93Deposition%20Aerosol%20Process%20for%20Composite%20Thin%20Films%20Incorporating%20Highly%20Dispersed%20Nanoparticles&rft.jtitle=Advanced%20science&rft.au=Carnide,%20Guillaume&rft.date=2023-02-01&rft.volume=10&rft.issue=5&rft.spage=e2204929&rft.epage=n/a&rft.pages=e2204929-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202204929&rft_dat=%3Cproquest_pubme%3E2755804658%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776293133&rft_id=info:pmid/36529954&rfr_iscdi=true