Nanopore membrane chip-based isolation method for metabolomic analysis of plasma small extracellular vesicles from COVID-19 survivors

Multiple studies showed that metabolic disorders play a critical role in respiratory infectious diseases, including COVID-19. Metabolites contained in small extracellular vesicles (sEVs) are different from those in plasma at the acute stage, while the metabolic features of plasma sEVs of COVID-19 su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2023-05, Vol.227, p.115152-115152, Article 115152
Hauptverfasser: Huang, Qi, Xiao, Wenjing, Chen, Peng, Xia, Hui, Wang, Sufei, Sun, Yice, Tan, Qi, Tan, Xueyun, Mao, Kaimin, Xie, Han, Luo, Ping, Duan, Limin, Meng, Daquan, Ma, Yanling, Zhao, Zilin, Wang, Fen, Zhang, Jianchu, Liu, Bi-Feng, Jin, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115152
container_issue
container_start_page 115152
container_title Biosensors & bioelectronics
container_volume 227
creator Huang, Qi
Xiao, Wenjing
Chen, Peng
Xia, Hui
Wang, Sufei
Sun, Yice
Tan, Qi
Tan, Xueyun
Mao, Kaimin
Xie, Han
Luo, Ping
Duan, Limin
Meng, Daquan
Ma, Yanling
Zhao, Zilin
Wang, Fen
Zhang, Jianchu
Liu, Bi-Feng
Jin, Yang
description Multiple studies showed that metabolic disorders play a critical role in respiratory infectious diseases, including COVID-19. Metabolites contained in small extracellular vesicles (sEVs) are different from those in plasma at the acute stage, while the metabolic features of plasma sEVs of COVID-19 survivors remain unknown. Here, we used a nanopore membrane-based microfluidic chip for plasma sEVs separation, termed ExoSEC, and compared the sEVs obtained by UC, REG, and ExoSEC in terms the time, cost, purity, and metabolic features. The results indicated the ExoSEC was much less costly, provided higher purity by particles/proteins ratio, and achieved 205-fold and 2-fold higher sEVs yield, than UC and REG, respectively. Moreover, more metabolites were identified and several signaling pathways were significantly enriched in ExoSEC-sEVs compared to UC-sEVs and REG-sEVs. Furthermore, we detected 306 metabolites in plasma sEVs using ExoSEC from recovered asymptomatic (RA), moderate (RM), and severe/critical COVID-19 (RS) patients without underlying diseases 3 months after discharge. Our study demonstrated that COVID-19 survivors, especially RS, experienced significant metabolic alteration and the dysregulated pathways mainly involved fatty acid biosynthesis, phenylalanine metabolism, etc. Metabolites of the fatty acid biosynthesis pathway bore a significantly negative association with red blood cell counts and hemoglobin, which might be ascribed to hypoxia or respiratory failure in RM and RS but not in RA at the acute stage. Our study confirmed that ExoSEC could provide a practical and economical alternative for high throughput sEVs metabolomic study.
doi_str_mv 10.1016/j.bios.2023.115152
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9928611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566323000945</els_id><sourcerecordid>2778974162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-55f065d39e3c9dbe7c96b9058bdc212ba2e3df77410ee461c382970577e7f4653</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi0EotvCC3BAPnLJ4j-xHUsICS1QKlX0Alwtx5mwXjnxYidR-wC8N462VHCBgzWW5jefvpkPoReUbCmh8vVh2_qYt4wwvqVUUMEeoQ1tFK9qxsVjtCFayEpIyc_Qec4HQoiimjxFZ1w2RDDFNujnZzvGY0yABxjaZEfAbu-PVWszdNjnGOzk41i60z52uI9p_do2hjh4h-1ow132GcceH4PNg8XlhYDhdkrWQQhzsAkvkL0LkHGf4oB3N9-u3ldU4zynxS8x5WfoSW9Dhuf39QJ9_fjhy-5TdX1zebV7d125muupEqInUnRcA3e6a0E5LVtNRNN2jlHWWga865WqKQGoJXW8YVoRoRSovpaCX6C3J93j3A7QORiLy2COyQ823Zlovfm7M_q9-R4XozVrJKVF4NW9QIo_ZsiTGXxe1yyHi3M2nAquJFNC_BdlSjW6WJWsoOyEuhRzTtA_OKLErFGbg1mjNmvU5hR1GXr55y4PI7-zLcCbEwDloouHZLLzMDrofAI3mS76f-n_Au0ovUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778974162</pqid></control><display><type>article</type><title>Nanopore membrane chip-based isolation method for metabolomic analysis of plasma small extracellular vesicles from COVID-19 survivors</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Huang, Qi ; Xiao, Wenjing ; Chen, Peng ; Xia, Hui ; Wang, Sufei ; Sun, Yice ; Tan, Qi ; Tan, Xueyun ; Mao, Kaimin ; Xie, Han ; Luo, Ping ; Duan, Limin ; Meng, Daquan ; Ma, Yanling ; Zhao, Zilin ; Wang, Fen ; Zhang, Jianchu ; Liu, Bi-Feng ; Jin, Yang</creator><creatorcontrib>Huang, Qi ; Xiao, Wenjing ; Chen, Peng ; Xia, Hui ; Wang, Sufei ; Sun, Yice ; Tan, Qi ; Tan, Xueyun ; Mao, Kaimin ; Xie, Han ; Luo, Ping ; Duan, Limin ; Meng, Daquan ; Ma, Yanling ; Zhao, Zilin ; Wang, Fen ; Zhang, Jianchu ; Liu, Bi-Feng ; Jin, Yang</creatorcontrib><description>Multiple studies showed that metabolic disorders play a critical role in respiratory infectious diseases, including COVID-19. Metabolites contained in small extracellular vesicles (sEVs) are different from those in plasma at the acute stage, while the metabolic features of plasma sEVs of COVID-19 survivors remain unknown. Here, we used a nanopore membrane-based microfluidic chip for plasma sEVs separation, termed ExoSEC, and compared the sEVs obtained by UC, REG, and ExoSEC in terms the time, cost, purity, and metabolic features. The results indicated the ExoSEC was much less costly, provided higher purity by particles/proteins ratio, and achieved 205-fold and 2-fold higher sEVs yield, than UC and REG, respectively. Moreover, more metabolites were identified and several signaling pathways were significantly enriched in ExoSEC-sEVs compared to UC-sEVs and REG-sEVs. Furthermore, we detected 306 metabolites in plasma sEVs using ExoSEC from recovered asymptomatic (RA), moderate (RM), and severe/critical COVID-19 (RS) patients without underlying diseases 3 months after discharge. Our study demonstrated that COVID-19 survivors, especially RS, experienced significant metabolic alteration and the dysregulated pathways mainly involved fatty acid biosynthesis, phenylalanine metabolism, etc. Metabolites of the fatty acid biosynthesis pathway bore a significantly negative association with red blood cell counts and hemoglobin, which might be ascribed to hypoxia or respiratory failure in RM and RS but not in RA at the acute stage. Our study confirmed that ExoSEC could provide a practical and economical alternative for high throughput sEVs metabolomic study.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2023.115152</identifier><identifier>PMID: 36805272</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Biosensing Techniques ; biosensors ; biosynthesis ; COVID-19 ; COVID-19 infection ; Extracellular Vesicles ; Fatty Acids ; hemoglobin ; Humans ; hypoxia ; isolation techniques ; metabolites ; Metabolomics ; Nanopores ; organ-on-a-chip ; phenylalanine ; sEVs separation and enrichment chip (ExoSEC) ; Small extracellular vesicles</subject><ispartof>Biosensors &amp; bioelectronics, 2023-05, Vol.227, p.115152-115152, Article 115152</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.</rights><rights>2023 The Authors. Published by Elsevier B.V. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c439t-55f065d39e3c9dbe7c96b9058bdc212ba2e3df77410ee461c382970577e7f4653</cites><orcidid>0000-0003-2409-7073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0956566323000945$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36805272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Qi</creatorcontrib><creatorcontrib>Xiao, Wenjing</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Xia, Hui</creatorcontrib><creatorcontrib>Wang, Sufei</creatorcontrib><creatorcontrib>Sun, Yice</creatorcontrib><creatorcontrib>Tan, Qi</creatorcontrib><creatorcontrib>Tan, Xueyun</creatorcontrib><creatorcontrib>Mao, Kaimin</creatorcontrib><creatorcontrib>Xie, Han</creatorcontrib><creatorcontrib>Luo, Ping</creatorcontrib><creatorcontrib>Duan, Limin</creatorcontrib><creatorcontrib>Meng, Daquan</creatorcontrib><creatorcontrib>Ma, Yanling</creatorcontrib><creatorcontrib>Zhao, Zilin</creatorcontrib><creatorcontrib>Wang, Fen</creatorcontrib><creatorcontrib>Zhang, Jianchu</creatorcontrib><creatorcontrib>Liu, Bi-Feng</creatorcontrib><creatorcontrib>Jin, Yang</creatorcontrib><title>Nanopore membrane chip-based isolation method for metabolomic analysis of plasma small extracellular vesicles from COVID-19 survivors</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Multiple studies showed that metabolic disorders play a critical role in respiratory infectious diseases, including COVID-19. Metabolites contained in small extracellular vesicles (sEVs) are different from those in plasma at the acute stage, while the metabolic features of plasma sEVs of COVID-19 survivors remain unknown. Here, we used a nanopore membrane-based microfluidic chip for plasma sEVs separation, termed ExoSEC, and compared the sEVs obtained by UC, REG, and ExoSEC in terms the time, cost, purity, and metabolic features. The results indicated the ExoSEC was much less costly, provided higher purity by particles/proteins ratio, and achieved 205-fold and 2-fold higher sEVs yield, than UC and REG, respectively. Moreover, more metabolites were identified and several signaling pathways were significantly enriched in ExoSEC-sEVs compared to UC-sEVs and REG-sEVs. Furthermore, we detected 306 metabolites in plasma sEVs using ExoSEC from recovered asymptomatic (RA), moderate (RM), and severe/critical COVID-19 (RS) patients without underlying diseases 3 months after discharge. Our study demonstrated that COVID-19 survivors, especially RS, experienced significant metabolic alteration and the dysregulated pathways mainly involved fatty acid biosynthesis, phenylalanine metabolism, etc. Metabolites of the fatty acid biosynthesis pathway bore a significantly negative association with red blood cell counts and hemoglobin, which might be ascribed to hypoxia or respiratory failure in RM and RS but not in RA at the acute stage. Our study confirmed that ExoSEC could provide a practical and economical alternative for high throughput sEVs metabolomic study.</description><subject>Biosensing Techniques</subject><subject>biosensors</subject><subject>biosynthesis</subject><subject>COVID-19</subject><subject>COVID-19 infection</subject><subject>Extracellular Vesicles</subject><subject>Fatty Acids</subject><subject>hemoglobin</subject><subject>Humans</subject><subject>hypoxia</subject><subject>isolation techniques</subject><subject>metabolites</subject><subject>Metabolomics</subject><subject>Nanopores</subject><subject>organ-on-a-chip</subject><subject>phenylalanine</subject><subject>sEVs separation and enrichment chip (ExoSEC)</subject><subject>Small extracellular vesicles</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQxi0EotvCC3BAPnLJ4j-xHUsICS1QKlX0Alwtx5mwXjnxYidR-wC8N462VHCBgzWW5jefvpkPoReUbCmh8vVh2_qYt4wwvqVUUMEeoQ1tFK9qxsVjtCFayEpIyc_Qec4HQoiimjxFZ1w2RDDFNujnZzvGY0yABxjaZEfAbu-PVWszdNjnGOzk41i60z52uI9p_do2hjh4h-1ow132GcceH4PNg8XlhYDhdkrWQQhzsAkvkL0LkHGf4oB3N9-u3ldU4zynxS8x5WfoSW9Dhuf39QJ9_fjhy-5TdX1zebV7d125muupEqInUnRcA3e6a0E5LVtNRNN2jlHWWga865WqKQGoJXW8YVoRoRSovpaCX6C3J93j3A7QORiLy2COyQ823Zlovfm7M_q9-R4XozVrJKVF4NW9QIo_ZsiTGXxe1yyHi3M2nAquJFNC_BdlSjW6WJWsoOyEuhRzTtA_OKLErFGbg1mjNmvU5hR1GXr55y4PI7-zLcCbEwDloouHZLLzMDrofAI3mS76f-n_Au0ovUQ</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Huang, Qi</creator><creator>Xiao, Wenjing</creator><creator>Chen, Peng</creator><creator>Xia, Hui</creator><creator>Wang, Sufei</creator><creator>Sun, Yice</creator><creator>Tan, Qi</creator><creator>Tan, Xueyun</creator><creator>Mao, Kaimin</creator><creator>Xie, Han</creator><creator>Luo, Ping</creator><creator>Duan, Limin</creator><creator>Meng, Daquan</creator><creator>Ma, Yanling</creator><creator>Zhao, Zilin</creator><creator>Wang, Fen</creator><creator>Zhang, Jianchu</creator><creator>Liu, Bi-Feng</creator><creator>Jin, Yang</creator><general>Elsevier B.V</general><general>The Authors. Published by Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2409-7073</orcidid></search><sort><creationdate>20230501</creationdate><title>Nanopore membrane chip-based isolation method for metabolomic analysis of plasma small extracellular vesicles from COVID-19 survivors</title><author>Huang, Qi ; Xiao, Wenjing ; Chen, Peng ; Xia, Hui ; Wang, Sufei ; Sun, Yice ; Tan, Qi ; Tan, Xueyun ; Mao, Kaimin ; Xie, Han ; Luo, Ping ; Duan, Limin ; Meng, Daquan ; Ma, Yanling ; Zhao, Zilin ; Wang, Fen ; Zhang, Jianchu ; Liu, Bi-Feng ; Jin, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-55f065d39e3c9dbe7c96b9058bdc212ba2e3df77410ee461c382970577e7f4653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biosensing Techniques</topic><topic>biosensors</topic><topic>biosynthesis</topic><topic>COVID-19</topic><topic>COVID-19 infection</topic><topic>Extracellular Vesicles</topic><topic>Fatty Acids</topic><topic>hemoglobin</topic><topic>Humans</topic><topic>hypoxia</topic><topic>isolation techniques</topic><topic>metabolites</topic><topic>Metabolomics</topic><topic>Nanopores</topic><topic>organ-on-a-chip</topic><topic>phenylalanine</topic><topic>sEVs separation and enrichment chip (ExoSEC)</topic><topic>Small extracellular vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Qi</creatorcontrib><creatorcontrib>Xiao, Wenjing</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Xia, Hui</creatorcontrib><creatorcontrib>Wang, Sufei</creatorcontrib><creatorcontrib>Sun, Yice</creatorcontrib><creatorcontrib>Tan, Qi</creatorcontrib><creatorcontrib>Tan, Xueyun</creatorcontrib><creatorcontrib>Mao, Kaimin</creatorcontrib><creatorcontrib>Xie, Han</creatorcontrib><creatorcontrib>Luo, Ping</creatorcontrib><creatorcontrib>Duan, Limin</creatorcontrib><creatorcontrib>Meng, Daquan</creatorcontrib><creatorcontrib>Ma, Yanling</creatorcontrib><creatorcontrib>Zhao, Zilin</creatorcontrib><creatorcontrib>Wang, Fen</creatorcontrib><creatorcontrib>Zhang, Jianchu</creatorcontrib><creatorcontrib>Liu, Bi-Feng</creatorcontrib><creatorcontrib>Jin, Yang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Qi</au><au>Xiao, Wenjing</au><au>Chen, Peng</au><au>Xia, Hui</au><au>Wang, Sufei</au><au>Sun, Yice</au><au>Tan, Qi</au><au>Tan, Xueyun</au><au>Mao, Kaimin</au><au>Xie, Han</au><au>Luo, Ping</au><au>Duan, Limin</au><au>Meng, Daquan</au><au>Ma, Yanling</au><au>Zhao, Zilin</au><au>Wang, Fen</au><au>Zhang, Jianchu</au><au>Liu, Bi-Feng</au><au>Jin, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanopore membrane chip-based isolation method for metabolomic analysis of plasma small extracellular vesicles from COVID-19 survivors</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>227</volume><spage>115152</spage><epage>115152</epage><pages>115152-115152</pages><artnum>115152</artnum><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Multiple studies showed that metabolic disorders play a critical role in respiratory infectious diseases, including COVID-19. Metabolites contained in small extracellular vesicles (sEVs) are different from those in plasma at the acute stage, while the metabolic features of plasma sEVs of COVID-19 survivors remain unknown. Here, we used a nanopore membrane-based microfluidic chip for plasma sEVs separation, termed ExoSEC, and compared the sEVs obtained by UC, REG, and ExoSEC in terms the time, cost, purity, and metabolic features. The results indicated the ExoSEC was much less costly, provided higher purity by particles/proteins ratio, and achieved 205-fold and 2-fold higher sEVs yield, than UC and REG, respectively. Moreover, more metabolites were identified and several signaling pathways were significantly enriched in ExoSEC-sEVs compared to UC-sEVs and REG-sEVs. Furthermore, we detected 306 metabolites in plasma sEVs using ExoSEC from recovered asymptomatic (RA), moderate (RM), and severe/critical COVID-19 (RS) patients without underlying diseases 3 months after discharge. Our study demonstrated that COVID-19 survivors, especially RS, experienced significant metabolic alteration and the dysregulated pathways mainly involved fatty acid biosynthesis, phenylalanine metabolism, etc. Metabolites of the fatty acid biosynthesis pathway bore a significantly negative association with red blood cell counts and hemoglobin, which might be ascribed to hypoxia or respiratory failure in RM and RS but not in RA at the acute stage. Our study confirmed that ExoSEC could provide a practical and economical alternative for high throughput sEVs metabolomic study.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>36805272</pmid><doi>10.1016/j.bios.2023.115152</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2409-7073</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2023-05, Vol.227, p.115152-115152, Article 115152
issn 0956-5663
1873-4235
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9928611
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Biosensing Techniques
biosensors
biosynthesis
COVID-19
COVID-19 infection
Extracellular Vesicles
Fatty Acids
hemoglobin
Humans
hypoxia
isolation techniques
metabolites
Metabolomics
Nanopores
organ-on-a-chip
phenylalanine
sEVs separation and enrichment chip (ExoSEC)
Small extracellular vesicles
title Nanopore membrane chip-based isolation method for metabolomic analysis of plasma small extracellular vesicles from COVID-19 survivors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanopore%20membrane%20chip-based%20isolation%20method%20for%20metabolomic%20analysis%20of%20plasma%20small%20extracellular%20vesicles%20from%20COVID-19%20survivors&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Huang,%20Qi&rft.date=2023-05-01&rft.volume=227&rft.spage=115152&rft.epage=115152&rft.pages=115152-115152&rft.artnum=115152&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2023.115152&rft_dat=%3Cproquest_pubme%3E2778974162%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778974162&rft_id=info:pmid/36805272&rft_els_id=S0956566323000945&rfr_iscdi=true