Nanopore membrane chip-based isolation method for metabolomic analysis of plasma small extracellular vesicles from COVID-19 survivors
Multiple studies showed that metabolic disorders play a critical role in respiratory infectious diseases, including COVID-19. Metabolites contained in small extracellular vesicles (sEVs) are different from those in plasma at the acute stage, while the metabolic features of plasma sEVs of COVID-19 su...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2023-05, Vol.227, p.115152-115152, Article 115152 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115152 |
---|---|
container_issue | |
container_start_page | 115152 |
container_title | Biosensors & bioelectronics |
container_volume | 227 |
creator | Huang, Qi Xiao, Wenjing Chen, Peng Xia, Hui Wang, Sufei Sun, Yice Tan, Qi Tan, Xueyun Mao, Kaimin Xie, Han Luo, Ping Duan, Limin Meng, Daquan Ma, Yanling Zhao, Zilin Wang, Fen Zhang, Jianchu Liu, Bi-Feng Jin, Yang |
description | Multiple studies showed that metabolic disorders play a critical role in respiratory infectious diseases, including COVID-19. Metabolites contained in small extracellular vesicles (sEVs) are different from those in plasma at the acute stage, while the metabolic features of plasma sEVs of COVID-19 survivors remain unknown. Here, we used a nanopore membrane-based microfluidic chip for plasma sEVs separation, termed ExoSEC, and compared the sEVs obtained by UC, REG, and ExoSEC in terms the time, cost, purity, and metabolic features. The results indicated the ExoSEC was much less costly, provided higher purity by particles/proteins ratio, and achieved 205-fold and 2-fold higher sEVs yield, than UC and REG, respectively. Moreover, more metabolites were identified and several signaling pathways were significantly enriched in ExoSEC-sEVs compared to UC-sEVs and REG-sEVs. Furthermore, we detected 306 metabolites in plasma sEVs using ExoSEC from recovered asymptomatic (RA), moderate (RM), and severe/critical COVID-19 (RS) patients without underlying diseases 3 months after discharge. Our study demonstrated that COVID-19 survivors, especially RS, experienced significant metabolic alteration and the dysregulated pathways mainly involved fatty acid biosynthesis, phenylalanine metabolism, etc. Metabolites of the fatty acid biosynthesis pathway bore a significantly negative association with red blood cell counts and hemoglobin, which might be ascribed to hypoxia or respiratory failure in RM and RS but not in RA at the acute stage. Our study confirmed that ExoSEC could provide a practical and economical alternative for high throughput sEVs metabolomic study. |
doi_str_mv | 10.1016/j.bios.2023.115152 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9928611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566323000945</els_id><sourcerecordid>2778974162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-55f065d39e3c9dbe7c96b9058bdc212ba2e3df77410ee461c382970577e7f4653</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi0EotvCC3BAPnLJ4j-xHUsICS1QKlX0Alwtx5mwXjnxYidR-wC8N462VHCBgzWW5jefvpkPoReUbCmh8vVh2_qYt4wwvqVUUMEeoQ1tFK9qxsVjtCFayEpIyc_Qec4HQoiimjxFZ1w2RDDFNujnZzvGY0yABxjaZEfAbu-PVWszdNjnGOzk41i60z52uI9p_do2hjh4h-1ow132GcceH4PNg8XlhYDhdkrWQQhzsAkvkL0LkHGf4oB3N9-u3ldU4zynxS8x5WfoSW9Dhuf39QJ9_fjhy-5TdX1zebV7d125muupEqInUnRcA3e6a0E5LVtNRNN2jlHWWga865WqKQGoJXW8YVoRoRSovpaCX6C3J93j3A7QORiLy2COyQ823Zlovfm7M_q9-R4XozVrJKVF4NW9QIo_ZsiTGXxe1yyHi3M2nAquJFNC_BdlSjW6WJWsoOyEuhRzTtA_OKLErFGbg1mjNmvU5hR1GXr55y4PI7-zLcCbEwDloouHZLLzMDrofAI3mS76f-n_Au0ovUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778974162</pqid></control><display><type>article</type><title>Nanopore membrane chip-based isolation method for metabolomic analysis of plasma small extracellular vesicles from COVID-19 survivors</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Huang, Qi ; Xiao, Wenjing ; Chen, Peng ; Xia, Hui ; Wang, Sufei ; Sun, Yice ; Tan, Qi ; Tan, Xueyun ; Mao, Kaimin ; Xie, Han ; Luo, Ping ; Duan, Limin ; Meng, Daquan ; Ma, Yanling ; Zhao, Zilin ; Wang, Fen ; Zhang, Jianchu ; Liu, Bi-Feng ; Jin, Yang</creator><creatorcontrib>Huang, Qi ; Xiao, Wenjing ; Chen, Peng ; Xia, Hui ; Wang, Sufei ; Sun, Yice ; Tan, Qi ; Tan, Xueyun ; Mao, Kaimin ; Xie, Han ; Luo, Ping ; Duan, Limin ; Meng, Daquan ; Ma, Yanling ; Zhao, Zilin ; Wang, Fen ; Zhang, Jianchu ; Liu, Bi-Feng ; Jin, Yang</creatorcontrib><description>Multiple studies showed that metabolic disorders play a critical role in respiratory infectious diseases, including COVID-19. Metabolites contained in small extracellular vesicles (sEVs) are different from those in plasma at the acute stage, while the metabolic features of plasma sEVs of COVID-19 survivors remain unknown. Here, we used a nanopore membrane-based microfluidic chip for plasma sEVs separation, termed ExoSEC, and compared the sEVs obtained by UC, REG, and ExoSEC in terms the time, cost, purity, and metabolic features. The results indicated the ExoSEC was much less costly, provided higher purity by particles/proteins ratio, and achieved 205-fold and 2-fold higher sEVs yield, than UC and REG, respectively. Moreover, more metabolites were identified and several signaling pathways were significantly enriched in ExoSEC-sEVs compared to UC-sEVs and REG-sEVs. Furthermore, we detected 306 metabolites in plasma sEVs using ExoSEC from recovered asymptomatic (RA), moderate (RM), and severe/critical COVID-19 (RS) patients without underlying diseases 3 months after discharge. Our study demonstrated that COVID-19 survivors, especially RS, experienced significant metabolic alteration and the dysregulated pathways mainly involved fatty acid biosynthesis, phenylalanine metabolism, etc. Metabolites of the fatty acid biosynthesis pathway bore a significantly negative association with red blood cell counts and hemoglobin, which might be ascribed to hypoxia or respiratory failure in RM and RS but not in RA at the acute stage. Our study confirmed that ExoSEC could provide a practical and economical alternative for high throughput sEVs metabolomic study.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2023.115152</identifier><identifier>PMID: 36805272</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Biosensing Techniques ; biosensors ; biosynthesis ; COVID-19 ; COVID-19 infection ; Extracellular Vesicles ; Fatty Acids ; hemoglobin ; Humans ; hypoxia ; isolation techniques ; metabolites ; Metabolomics ; Nanopores ; organ-on-a-chip ; phenylalanine ; sEVs separation and enrichment chip (ExoSEC) ; Small extracellular vesicles</subject><ispartof>Biosensors & bioelectronics, 2023-05, Vol.227, p.115152-115152, Article 115152</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.</rights><rights>2023 The Authors. Published by Elsevier B.V. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c439t-55f065d39e3c9dbe7c96b9058bdc212ba2e3df77410ee461c382970577e7f4653</cites><orcidid>0000-0003-2409-7073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0956566323000945$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36805272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Qi</creatorcontrib><creatorcontrib>Xiao, Wenjing</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Xia, Hui</creatorcontrib><creatorcontrib>Wang, Sufei</creatorcontrib><creatorcontrib>Sun, Yice</creatorcontrib><creatorcontrib>Tan, Qi</creatorcontrib><creatorcontrib>Tan, Xueyun</creatorcontrib><creatorcontrib>Mao, Kaimin</creatorcontrib><creatorcontrib>Xie, Han</creatorcontrib><creatorcontrib>Luo, Ping</creatorcontrib><creatorcontrib>Duan, Limin</creatorcontrib><creatorcontrib>Meng, Daquan</creatorcontrib><creatorcontrib>Ma, Yanling</creatorcontrib><creatorcontrib>Zhao, Zilin</creatorcontrib><creatorcontrib>Wang, Fen</creatorcontrib><creatorcontrib>Zhang, Jianchu</creatorcontrib><creatorcontrib>Liu, Bi-Feng</creatorcontrib><creatorcontrib>Jin, Yang</creatorcontrib><title>Nanopore membrane chip-based isolation method for metabolomic analysis of plasma small extracellular vesicles from COVID-19 survivors</title><title>Biosensors & bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Multiple studies showed that metabolic disorders play a critical role in respiratory infectious diseases, including COVID-19. Metabolites contained in small extracellular vesicles (sEVs) are different from those in plasma at the acute stage, while the metabolic features of plasma sEVs of COVID-19 survivors remain unknown. Here, we used a nanopore membrane-based microfluidic chip for plasma sEVs separation, termed ExoSEC, and compared the sEVs obtained by UC, REG, and ExoSEC in terms the time, cost, purity, and metabolic features. The results indicated the ExoSEC was much less costly, provided higher purity by particles/proteins ratio, and achieved 205-fold and 2-fold higher sEVs yield, than UC and REG, respectively. Moreover, more metabolites were identified and several signaling pathways were significantly enriched in ExoSEC-sEVs compared to UC-sEVs and REG-sEVs. Furthermore, we detected 306 metabolites in plasma sEVs using ExoSEC from recovered asymptomatic (RA), moderate (RM), and severe/critical COVID-19 (RS) patients without underlying diseases 3 months after discharge. Our study demonstrated that COVID-19 survivors, especially RS, experienced significant metabolic alteration and the dysregulated pathways mainly involved fatty acid biosynthesis, phenylalanine metabolism, etc. Metabolites of the fatty acid biosynthesis pathway bore a significantly negative association with red blood cell counts and hemoglobin, which might be ascribed to hypoxia or respiratory failure in RM and RS but not in RA at the acute stage. Our study confirmed that ExoSEC could provide a practical and economical alternative for high throughput sEVs metabolomic study.</description><subject>Biosensing Techniques</subject><subject>biosensors</subject><subject>biosynthesis</subject><subject>COVID-19</subject><subject>COVID-19 infection</subject><subject>Extracellular Vesicles</subject><subject>Fatty Acids</subject><subject>hemoglobin</subject><subject>Humans</subject><subject>hypoxia</subject><subject>isolation techniques</subject><subject>metabolites</subject><subject>Metabolomics</subject><subject>Nanopores</subject><subject>organ-on-a-chip</subject><subject>phenylalanine</subject><subject>sEVs separation and enrichment chip (ExoSEC)</subject><subject>Small extracellular vesicles</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQxi0EotvCC3BAPnLJ4j-xHUsICS1QKlX0Alwtx5mwXjnxYidR-wC8N462VHCBgzWW5jefvpkPoReUbCmh8vVh2_qYt4wwvqVUUMEeoQ1tFK9qxsVjtCFayEpIyc_Qec4HQoiimjxFZ1w2RDDFNujnZzvGY0yABxjaZEfAbu-PVWszdNjnGOzk41i60z52uI9p_do2hjh4h-1ow132GcceH4PNg8XlhYDhdkrWQQhzsAkvkL0LkHGf4oB3N9-u3ldU4zynxS8x5WfoSW9Dhuf39QJ9_fjhy-5TdX1zebV7d125muupEqInUnRcA3e6a0E5LVtNRNN2jlHWWga865WqKQGoJXW8YVoRoRSovpaCX6C3J93j3A7QORiLy2COyQ823Zlovfm7M_q9-R4XozVrJKVF4NW9QIo_ZsiTGXxe1yyHi3M2nAquJFNC_BdlSjW6WJWsoOyEuhRzTtA_OKLErFGbg1mjNmvU5hR1GXr55y4PI7-zLcCbEwDloouHZLLzMDrofAI3mS76f-n_Au0ovUQ</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Huang, Qi</creator><creator>Xiao, Wenjing</creator><creator>Chen, Peng</creator><creator>Xia, Hui</creator><creator>Wang, Sufei</creator><creator>Sun, Yice</creator><creator>Tan, Qi</creator><creator>Tan, Xueyun</creator><creator>Mao, Kaimin</creator><creator>Xie, Han</creator><creator>Luo, Ping</creator><creator>Duan, Limin</creator><creator>Meng, Daquan</creator><creator>Ma, Yanling</creator><creator>Zhao, Zilin</creator><creator>Wang, Fen</creator><creator>Zhang, Jianchu</creator><creator>Liu, Bi-Feng</creator><creator>Jin, Yang</creator><general>Elsevier B.V</general><general>The Authors. Published by Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2409-7073</orcidid></search><sort><creationdate>20230501</creationdate><title>Nanopore membrane chip-based isolation method for metabolomic analysis of plasma small extracellular vesicles from COVID-19 survivors</title><author>Huang, Qi ; Xiao, Wenjing ; Chen, Peng ; Xia, Hui ; Wang, Sufei ; Sun, Yice ; Tan, Qi ; Tan, Xueyun ; Mao, Kaimin ; Xie, Han ; Luo, Ping ; Duan, Limin ; Meng, Daquan ; Ma, Yanling ; Zhao, Zilin ; Wang, Fen ; Zhang, Jianchu ; Liu, Bi-Feng ; Jin, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-55f065d39e3c9dbe7c96b9058bdc212ba2e3df77410ee461c382970577e7f4653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biosensing Techniques</topic><topic>biosensors</topic><topic>biosynthesis</topic><topic>COVID-19</topic><topic>COVID-19 infection</topic><topic>Extracellular Vesicles</topic><topic>Fatty Acids</topic><topic>hemoglobin</topic><topic>Humans</topic><topic>hypoxia</topic><topic>isolation techniques</topic><topic>metabolites</topic><topic>Metabolomics</topic><topic>Nanopores</topic><topic>organ-on-a-chip</topic><topic>phenylalanine</topic><topic>sEVs separation and enrichment chip (ExoSEC)</topic><topic>Small extracellular vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Qi</creatorcontrib><creatorcontrib>Xiao, Wenjing</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Xia, Hui</creatorcontrib><creatorcontrib>Wang, Sufei</creatorcontrib><creatorcontrib>Sun, Yice</creatorcontrib><creatorcontrib>Tan, Qi</creatorcontrib><creatorcontrib>Tan, Xueyun</creatorcontrib><creatorcontrib>Mao, Kaimin</creatorcontrib><creatorcontrib>Xie, Han</creatorcontrib><creatorcontrib>Luo, Ping</creatorcontrib><creatorcontrib>Duan, Limin</creatorcontrib><creatorcontrib>Meng, Daquan</creatorcontrib><creatorcontrib>Ma, Yanling</creatorcontrib><creatorcontrib>Zhao, Zilin</creatorcontrib><creatorcontrib>Wang, Fen</creatorcontrib><creatorcontrib>Zhang, Jianchu</creatorcontrib><creatorcontrib>Liu, Bi-Feng</creatorcontrib><creatorcontrib>Jin, Yang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biosensors & bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Qi</au><au>Xiao, Wenjing</au><au>Chen, Peng</au><au>Xia, Hui</au><au>Wang, Sufei</au><au>Sun, Yice</au><au>Tan, Qi</au><au>Tan, Xueyun</au><au>Mao, Kaimin</au><au>Xie, Han</au><au>Luo, Ping</au><au>Duan, Limin</au><au>Meng, Daquan</au><au>Ma, Yanling</au><au>Zhao, Zilin</au><au>Wang, Fen</au><au>Zhang, Jianchu</au><au>Liu, Bi-Feng</au><au>Jin, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanopore membrane chip-based isolation method for metabolomic analysis of plasma small extracellular vesicles from COVID-19 survivors</atitle><jtitle>Biosensors & bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>227</volume><spage>115152</spage><epage>115152</epage><pages>115152-115152</pages><artnum>115152</artnum><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Multiple studies showed that metabolic disorders play a critical role in respiratory infectious diseases, including COVID-19. Metabolites contained in small extracellular vesicles (sEVs) are different from those in plasma at the acute stage, while the metabolic features of plasma sEVs of COVID-19 survivors remain unknown. Here, we used a nanopore membrane-based microfluidic chip for plasma sEVs separation, termed ExoSEC, and compared the sEVs obtained by UC, REG, and ExoSEC in terms the time, cost, purity, and metabolic features. The results indicated the ExoSEC was much less costly, provided higher purity by particles/proteins ratio, and achieved 205-fold and 2-fold higher sEVs yield, than UC and REG, respectively. Moreover, more metabolites were identified and several signaling pathways were significantly enriched in ExoSEC-sEVs compared to UC-sEVs and REG-sEVs. Furthermore, we detected 306 metabolites in plasma sEVs using ExoSEC from recovered asymptomatic (RA), moderate (RM), and severe/critical COVID-19 (RS) patients without underlying diseases 3 months after discharge. Our study demonstrated that COVID-19 survivors, especially RS, experienced significant metabolic alteration and the dysregulated pathways mainly involved fatty acid biosynthesis, phenylalanine metabolism, etc. Metabolites of the fatty acid biosynthesis pathway bore a significantly negative association with red blood cell counts and hemoglobin, which might be ascribed to hypoxia or respiratory failure in RM and RS but not in RA at the acute stage. Our study confirmed that ExoSEC could provide a practical and economical alternative for high throughput sEVs metabolomic study.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>36805272</pmid><doi>10.1016/j.bios.2023.115152</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2409-7073</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5663 |
ispartof | Biosensors & bioelectronics, 2023-05, Vol.227, p.115152-115152, Article 115152 |
issn | 0956-5663 1873-4235 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9928611 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Biosensing Techniques biosensors biosynthesis COVID-19 COVID-19 infection Extracellular Vesicles Fatty Acids hemoglobin Humans hypoxia isolation techniques metabolites Metabolomics Nanopores organ-on-a-chip phenylalanine sEVs separation and enrichment chip (ExoSEC) Small extracellular vesicles |
title | Nanopore membrane chip-based isolation method for metabolomic analysis of plasma small extracellular vesicles from COVID-19 survivors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanopore%20membrane%20chip-based%20isolation%20method%20for%20metabolomic%20analysis%20of%20plasma%20small%20extracellular%20vesicles%20from%20COVID-19%20survivors&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Huang,%20Qi&rft.date=2023-05-01&rft.volume=227&rft.spage=115152&rft.epage=115152&rft.pages=115152-115152&rft.artnum=115152&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2023.115152&rft_dat=%3Cproquest_pubme%3E2778974162%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778974162&rft_id=info:pmid/36805272&rft_els_id=S0956566323000945&rfr_iscdi=true |