Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis
Post-translational histone modifications modulate chromatin activity to affect gene expression. How chromatin states underlie lineage choice in single cells is relatively unexplored. We develop sort-assisted single-cell chromatin immunocleavage (sortChIC) and map active (H3K4me1 and H3K4me3) and rep...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2023-02, Vol.55 (2), p.333-345 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 345 |
---|---|
container_issue | 2 |
container_start_page | 333 |
container_title | Nature genetics |
container_volume | 55 |
creator | Zeller, Peter Yeung, Jake Viñas Gaza, Helena de Barbanson, Buys Anton Bhardwaj, Vivek Florescu, Maria van der Linden, Reinier van Oudenaarden, Alexander |
description | Post-translational histone modifications modulate chromatin activity to affect gene expression. How chromatin states underlie lineage choice in single cells is relatively unexplored. We develop sort-assisted single-cell chromatin immunocleavage (sortChIC) and map active (H3K4me1 and H3K4me3) and repressive (H3K27me3 and H3K9me3) histone modifications in the mouse bone marrow. During differentiation, hematopoietic stem and progenitor cells (HSPCs) acquire active chromatin states mediated by cell-type-specifying transcription factors, which are unique for each lineage. By contrast, most alterations in repressive marks during differentiation occur independent of the final cell type. Chromatin trajectory analysis shows that lineage choice at the chromatin level occurs at the progenitor stage. Joint profiling of H3K4me1 and H3K9me3 demonstrates that cell types within the myeloid lineage have distinct active chromatin but share similar myeloid-specific heterochromatin states. This implies a hierarchical regulation of chromatin during hematopoiesis: heterochromatin dynamics distinguish differentiation trajectories and lineages, while euchromatin dynamics reflect cell types within lineages.
Sort-assisted single-cell chromatin immunocleavage (sortChIC) combines single-cell histone modification profiling with fluorescence-activated cell sorting (FACS), enabling the study of rare cell populations. H3K4me1/H3K4me3, H3K9me3 and H3K27me3 profiling of blood suggest a model of lineage-shared repressive and cell type-specific active chromatin. |
doi_str_mv | 10.1038/s41588-022-01260-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9925381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756671471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c505a5037ac8d60dd4b52d9cb498aa8c2b8d909647240d6a2765739da898ef973</originalsourceid><addsrcrecordid>eNp9kUtrFTEYhoNY7EX_gAsZcOMm9ss92Qhy0FoouGi7DjlJTidlZnJMZoT-ezOeWi8LVwnJ877f5UXoNYH3BJg-r5wIrTFQioFQCZg9QydEcImJIvp5u4MkmAOTx-i01nsAwjnoF-iYScGMJOoE3Vyn6W6I2Mdh6Gou86a_3HQpxGlOuxRr16dYXPF98m7ofF_y6OY0deFhcmPytQtLaQ5dH9t73ucmSfUlOtq5ocZXj-cZuv386WbzBV99vbjcfLzCnis-Yy9AOAFMOa-DhBD4VtBg_JYb7Zz2dKuDASO5ohyCdFRJoZgJThsdd0axM_Th4LtftmMMvjVd3GD3JY2uPNjskv37Z0q9vcvfrTFUME2awbtHg5K_LbHOdkx1XYWbYl6qpUpIqQhXK_r2H_Q-L2Vq4zVKKdCSwkrRA-VLrrXE3VMzBOwamj2EZlto9mdoljXRmz_HeJL8SqkB7ADU_brsWH7X_o_tDyQeo34</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777086201</pqid></control><display><type>article</type><title>Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zeller, Peter ; Yeung, Jake ; Viñas Gaza, Helena ; de Barbanson, Buys Anton ; Bhardwaj, Vivek ; Florescu, Maria ; van der Linden, Reinier ; van Oudenaarden, Alexander</creator><creatorcontrib>Zeller, Peter ; Yeung, Jake ; Viñas Gaza, Helena ; de Barbanson, Buys Anton ; Bhardwaj, Vivek ; Florescu, Maria ; van der Linden, Reinier ; van Oudenaarden, Alexander</creatorcontrib><description>Post-translational histone modifications modulate chromatin activity to affect gene expression. How chromatin states underlie lineage choice in single cells is relatively unexplored. We develop sort-assisted single-cell chromatin immunocleavage (sortChIC) and map active (H3K4me1 and H3K4me3) and repressive (H3K27me3 and H3K9me3) histone modifications in the mouse bone marrow. During differentiation, hematopoietic stem and progenitor cells (HSPCs) acquire active chromatin states mediated by cell-type-specifying transcription factors, which are unique for each lineage. By contrast, most alterations in repressive marks during differentiation occur independent of the final cell type. Chromatin trajectory analysis shows that lineage choice at the chromatin level occurs at the progenitor stage. Joint profiling of H3K4me1 and H3K9me3 demonstrates that cell types within the myeloid lineage have distinct active chromatin but share similar myeloid-specific heterochromatin states. This implies a hierarchical regulation of chromatin during hematopoiesis: heterochromatin dynamics distinguish differentiation trajectories and lineages, while euchromatin dynamics reflect cell types within lineages.
Sort-assisted single-cell chromatin immunocleavage (sortChIC) combines single-cell histone modification profiling with fluorescence-activated cell sorting (FACS), enabling the study of rare cell populations. H3K4me1/H3K4me3, H3K9me3 and H3K27me3 profiling of blood suggest a model of lineage-shared repressive and cell type-specific active chromatin.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-022-01260-3</identifier><identifier>PMID: 36539617</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/136/532 ; 631/1647/514/1948 ; 631/208/177 ; 631/337/176 ; Agriculture ; Animal Genetics and Genomics ; Animals ; Antibodies ; Biomedical and Life Sciences ; Biomedicine ; Blood ; Bone marrow ; Cancer Research ; Cell cycle ; Cell differentiation ; Cell Differentiation - genetics ; Cell Lineage - genetics ; Cells (biology) ; Chromatin ; Chromatin - genetics ; Differentiation ; Epigenesis, Genetic ; Euchromatin ; Gene expression ; Gene Function ; Genomes ; Hematopoiesis ; Hematopoiesis - genetics ; Hematopoietic stem cells ; Heterochromatin ; Heterochromatin - genetics ; Histones ; Human Genetics ; Mice ; Post-translation ; Progenitor cells ; technical-report ; Trajectory analysis ; Transcription factors</subject><ispartof>Nature genetics, 2023-02, Vol.55 (2), p.333-345</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>Copyright Nature Publishing Group Feb 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c505a5037ac8d60dd4b52d9cb498aa8c2b8d909647240d6a2765739da898ef973</citedby><cites>FETCH-LOGICAL-c474t-c505a5037ac8d60dd4b52d9cb498aa8c2b8d909647240d6a2765739da898ef973</cites><orcidid>0000-0002-4898-2862 ; 0000-0003-1732-1559 ; 0000-0001-7437-8901 ; 0000-0002-5570-9338 ; 0000-0002-9442-3551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-022-01260-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-022-01260-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36539617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeller, Peter</creatorcontrib><creatorcontrib>Yeung, Jake</creatorcontrib><creatorcontrib>Viñas Gaza, Helena</creatorcontrib><creatorcontrib>de Barbanson, Buys Anton</creatorcontrib><creatorcontrib>Bhardwaj, Vivek</creatorcontrib><creatorcontrib>Florescu, Maria</creatorcontrib><creatorcontrib>van der Linden, Reinier</creatorcontrib><creatorcontrib>van Oudenaarden, Alexander</creatorcontrib><title>Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Post-translational histone modifications modulate chromatin activity to affect gene expression. How chromatin states underlie lineage choice in single cells is relatively unexplored. We develop sort-assisted single-cell chromatin immunocleavage (sortChIC) and map active (H3K4me1 and H3K4me3) and repressive (H3K27me3 and H3K9me3) histone modifications in the mouse bone marrow. During differentiation, hematopoietic stem and progenitor cells (HSPCs) acquire active chromatin states mediated by cell-type-specifying transcription factors, which are unique for each lineage. By contrast, most alterations in repressive marks during differentiation occur independent of the final cell type. Chromatin trajectory analysis shows that lineage choice at the chromatin level occurs at the progenitor stage. Joint profiling of H3K4me1 and H3K9me3 demonstrates that cell types within the myeloid lineage have distinct active chromatin but share similar myeloid-specific heterochromatin states. This implies a hierarchical regulation of chromatin during hematopoiesis: heterochromatin dynamics distinguish differentiation trajectories and lineages, while euchromatin dynamics reflect cell types within lineages.
Sort-assisted single-cell chromatin immunocleavage (sortChIC) combines single-cell histone modification profiling with fluorescence-activated cell sorting (FACS), enabling the study of rare cell populations. H3K4me1/H3K4me3, H3K9me3 and H3K27me3 profiling of blood suggest a model of lineage-shared repressive and cell type-specific active chromatin.</description><subject>631/136/532</subject><subject>631/1647/514/1948</subject><subject>631/208/177</subject><subject>631/337/176</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood</subject><subject>Bone marrow</subject><subject>Cancer Research</subject><subject>Cell cycle</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Lineage - genetics</subject><subject>Cells (biology)</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Differentiation</subject><subject>Epigenesis, Genetic</subject><subject>Euchromatin</subject><subject>Gene expression</subject><subject>Gene Function</subject><subject>Genomes</subject><subject>Hematopoiesis</subject><subject>Hematopoiesis - genetics</subject><subject>Hematopoietic stem cells</subject><subject>Heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>Histones</subject><subject>Human Genetics</subject><subject>Mice</subject><subject>Post-translation</subject><subject>Progenitor cells</subject><subject>technical-report</subject><subject>Trajectory analysis</subject><subject>Transcription factors</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtrFTEYhoNY7EX_gAsZcOMm9ss92Qhy0FoouGi7DjlJTidlZnJMZoT-ezOeWi8LVwnJ877f5UXoNYH3BJg-r5wIrTFQioFQCZg9QydEcImJIvp5u4MkmAOTx-i01nsAwjnoF-iYScGMJOoE3Vyn6W6I2Mdh6Gou86a_3HQpxGlOuxRr16dYXPF98m7ofF_y6OY0deFhcmPytQtLaQ5dH9t73ucmSfUlOtq5ocZXj-cZuv386WbzBV99vbjcfLzCnis-Yy9AOAFMOa-DhBD4VtBg_JYb7Zz2dKuDASO5ohyCdFRJoZgJThsdd0axM_Th4LtftmMMvjVd3GD3JY2uPNjskv37Z0q9vcvfrTFUME2awbtHg5K_LbHOdkx1XYWbYl6qpUpIqQhXK_r2H_Q-L2Vq4zVKKdCSwkrRA-VLrrXE3VMzBOwamj2EZlto9mdoljXRmz_HeJL8SqkB7ADU_brsWH7X_o_tDyQeo34</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zeller, Peter</creator><creator>Yeung, Jake</creator><creator>Viñas Gaza, Helena</creator><creator>de Barbanson, Buys Anton</creator><creator>Bhardwaj, Vivek</creator><creator>Florescu, Maria</creator><creator>van der Linden, Reinier</creator><creator>van Oudenaarden, Alexander</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4898-2862</orcidid><orcidid>https://orcid.org/0000-0003-1732-1559</orcidid><orcidid>https://orcid.org/0000-0001-7437-8901</orcidid><orcidid>https://orcid.org/0000-0002-5570-9338</orcidid><orcidid>https://orcid.org/0000-0002-9442-3551</orcidid></search><sort><creationdate>20230201</creationdate><title>Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis</title><author>Zeller, Peter ; Yeung, Jake ; Viñas Gaza, Helena ; de Barbanson, Buys Anton ; Bhardwaj, Vivek ; Florescu, Maria ; van der Linden, Reinier ; van Oudenaarden, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c505a5037ac8d60dd4b52d9cb498aa8c2b8d909647240d6a2765739da898ef973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/136/532</topic><topic>631/1647/514/1948</topic><topic>631/208/177</topic><topic>631/337/176</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood</topic><topic>Bone marrow</topic><topic>Cancer Research</topic><topic>Cell cycle</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Lineage - genetics</topic><topic>Cells (biology)</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Differentiation</topic><topic>Epigenesis, Genetic</topic><topic>Euchromatin</topic><topic>Gene expression</topic><topic>Gene Function</topic><topic>Genomes</topic><topic>Hematopoiesis</topic><topic>Hematopoiesis - genetics</topic><topic>Hematopoietic stem cells</topic><topic>Heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>Histones</topic><topic>Human Genetics</topic><topic>Mice</topic><topic>Post-translation</topic><topic>Progenitor cells</topic><topic>technical-report</topic><topic>Trajectory analysis</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeller, Peter</creatorcontrib><creatorcontrib>Yeung, Jake</creatorcontrib><creatorcontrib>Viñas Gaza, Helena</creatorcontrib><creatorcontrib>de Barbanson, Buys Anton</creatorcontrib><creatorcontrib>Bhardwaj, Vivek</creatorcontrib><creatorcontrib>Florescu, Maria</creatorcontrib><creatorcontrib>van der Linden, Reinier</creatorcontrib><creatorcontrib>van Oudenaarden, Alexander</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeller, Peter</au><au>Yeung, Jake</au><au>Viñas Gaza, Helena</au><au>de Barbanson, Buys Anton</au><au>Bhardwaj, Vivek</au><au>Florescu, Maria</au><au>van der Linden, Reinier</au><au>van Oudenaarden, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>55</volume><issue>2</issue><spage>333</spage><epage>345</epage><pages>333-345</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Post-translational histone modifications modulate chromatin activity to affect gene expression. How chromatin states underlie lineage choice in single cells is relatively unexplored. We develop sort-assisted single-cell chromatin immunocleavage (sortChIC) and map active (H3K4me1 and H3K4me3) and repressive (H3K27me3 and H3K9me3) histone modifications in the mouse bone marrow. During differentiation, hematopoietic stem and progenitor cells (HSPCs) acquire active chromatin states mediated by cell-type-specifying transcription factors, which are unique for each lineage. By contrast, most alterations in repressive marks during differentiation occur independent of the final cell type. Chromatin trajectory analysis shows that lineage choice at the chromatin level occurs at the progenitor stage. Joint profiling of H3K4me1 and H3K9me3 demonstrates that cell types within the myeloid lineage have distinct active chromatin but share similar myeloid-specific heterochromatin states. This implies a hierarchical regulation of chromatin during hematopoiesis: heterochromatin dynamics distinguish differentiation trajectories and lineages, while euchromatin dynamics reflect cell types within lineages.
Sort-assisted single-cell chromatin immunocleavage (sortChIC) combines single-cell histone modification profiling with fluorescence-activated cell sorting (FACS), enabling the study of rare cell populations. H3K4me1/H3K4me3, H3K9me3 and H3K27me3 profiling of blood suggest a model of lineage-shared repressive and cell type-specific active chromatin.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>36539617</pmid><doi>10.1038/s41588-022-01260-3</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4898-2862</orcidid><orcidid>https://orcid.org/0000-0003-1732-1559</orcidid><orcidid>https://orcid.org/0000-0001-7437-8901</orcidid><orcidid>https://orcid.org/0000-0002-5570-9338</orcidid><orcidid>https://orcid.org/0000-0002-9442-3551</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2023-02, Vol.55 (2), p.333-345 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9925381 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 631/136/532 631/1647/514/1948 631/208/177 631/337/176 Agriculture Animal Genetics and Genomics Animals Antibodies Biomedical and Life Sciences Biomedicine Blood Bone marrow Cancer Research Cell cycle Cell differentiation Cell Differentiation - genetics Cell Lineage - genetics Cells (biology) Chromatin Chromatin - genetics Differentiation Epigenesis, Genetic Euchromatin Gene expression Gene Function Genomes Hematopoiesis Hematopoiesis - genetics Hematopoietic stem cells Heterochromatin Heterochromatin - genetics Histones Human Genetics Mice Post-translation Progenitor cells technical-report Trajectory analysis Transcription factors |
title | Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-cell%20sortChIC%20identifies%20hierarchical%20chromatin%20dynamics%20during%20hematopoiesis&rft.jtitle=Nature%20genetics&rft.au=Zeller,%20Peter&rft.date=2023-02-01&rft.volume=55&rft.issue=2&rft.spage=333&rft.epage=345&rft.pages=333-345&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-022-01260-3&rft_dat=%3Cproquest_pubme%3E2756671471%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777086201&rft_id=info:pmid/36539617&rfr_iscdi=true |