Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis

Post-translational histone modifications modulate chromatin activity to affect gene expression. How chromatin states underlie lineage choice in single cells is relatively unexplored. We develop sort-assisted single-cell chromatin immunocleavage (sortChIC) and map active (H3K4me1 and H3K4me3) and rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2023-02, Vol.55 (2), p.333-345
Hauptverfasser: Zeller, Peter, Yeung, Jake, Viñas Gaza, Helena, de Barbanson, Buys Anton, Bhardwaj, Vivek, Florescu, Maria, van der Linden, Reinier, van Oudenaarden, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 345
container_issue 2
container_start_page 333
container_title Nature genetics
container_volume 55
creator Zeller, Peter
Yeung, Jake
Viñas Gaza, Helena
de Barbanson, Buys Anton
Bhardwaj, Vivek
Florescu, Maria
van der Linden, Reinier
van Oudenaarden, Alexander
description Post-translational histone modifications modulate chromatin activity to affect gene expression. How chromatin states underlie lineage choice in single cells is relatively unexplored. We develop sort-assisted single-cell chromatin immunocleavage (sortChIC) and map active (H3K4me1 and H3K4me3) and repressive (H3K27me3 and H3K9me3) histone modifications in the mouse bone marrow. During differentiation, hematopoietic stem and progenitor cells (HSPCs) acquire active chromatin states mediated by cell-type-specifying transcription factors, which are unique for each lineage. By contrast, most alterations in repressive marks during differentiation occur independent of the final cell type. Chromatin trajectory analysis shows that lineage choice at the chromatin level occurs at the progenitor stage. Joint profiling of H3K4me1 and H3K9me3 demonstrates that cell types within the myeloid lineage have distinct active chromatin but share similar myeloid-specific heterochromatin states. This implies a hierarchical regulation of chromatin during hematopoiesis: heterochromatin dynamics distinguish differentiation trajectories and lineages, while euchromatin dynamics reflect cell types within lineages. Sort-assisted single-cell chromatin immunocleavage (sortChIC) combines single-cell histone modification profiling with fluorescence-activated cell sorting (FACS), enabling the study of rare cell populations. H3K4me1/H3K4me3, H3K9me3 and H3K27me3 profiling of blood suggest a model of lineage-shared repressive and cell type-specific active chromatin.
doi_str_mv 10.1038/s41588-022-01260-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9925381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756671471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c505a5037ac8d60dd4b52d9cb498aa8c2b8d909647240d6a2765739da898ef973</originalsourceid><addsrcrecordid>eNp9kUtrFTEYhoNY7EX_gAsZcOMm9ss92Qhy0FoouGi7DjlJTidlZnJMZoT-ezOeWi8LVwnJ877f5UXoNYH3BJg-r5wIrTFQioFQCZg9QydEcImJIvp5u4MkmAOTx-i01nsAwjnoF-iYScGMJOoE3Vyn6W6I2Mdh6Gou86a_3HQpxGlOuxRr16dYXPF98m7ofF_y6OY0deFhcmPytQtLaQ5dH9t73ucmSfUlOtq5ocZXj-cZuv386WbzBV99vbjcfLzCnis-Yy9AOAFMOa-DhBD4VtBg_JYb7Zz2dKuDASO5ohyCdFRJoZgJThsdd0axM_Th4LtftmMMvjVd3GD3JY2uPNjskv37Z0q9vcvfrTFUME2awbtHg5K_LbHOdkx1XYWbYl6qpUpIqQhXK_r2H_Q-L2Vq4zVKKdCSwkrRA-VLrrXE3VMzBOwamj2EZlto9mdoljXRmz_HeJL8SqkB7ADU_brsWH7X_o_tDyQeo34</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2777086201</pqid></control><display><type>article</type><title>Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zeller, Peter ; Yeung, Jake ; Viñas Gaza, Helena ; de Barbanson, Buys Anton ; Bhardwaj, Vivek ; Florescu, Maria ; van der Linden, Reinier ; van Oudenaarden, Alexander</creator><creatorcontrib>Zeller, Peter ; Yeung, Jake ; Viñas Gaza, Helena ; de Barbanson, Buys Anton ; Bhardwaj, Vivek ; Florescu, Maria ; van der Linden, Reinier ; van Oudenaarden, Alexander</creatorcontrib><description>Post-translational histone modifications modulate chromatin activity to affect gene expression. How chromatin states underlie lineage choice in single cells is relatively unexplored. We develop sort-assisted single-cell chromatin immunocleavage (sortChIC) and map active (H3K4me1 and H3K4me3) and repressive (H3K27me3 and H3K9me3) histone modifications in the mouse bone marrow. During differentiation, hematopoietic stem and progenitor cells (HSPCs) acquire active chromatin states mediated by cell-type-specifying transcription factors, which are unique for each lineage. By contrast, most alterations in repressive marks during differentiation occur independent of the final cell type. Chromatin trajectory analysis shows that lineage choice at the chromatin level occurs at the progenitor stage. Joint profiling of H3K4me1 and H3K9me3 demonstrates that cell types within the myeloid lineage have distinct active chromatin but share similar myeloid-specific heterochromatin states. This implies a hierarchical regulation of chromatin during hematopoiesis: heterochromatin dynamics distinguish differentiation trajectories and lineages, while euchromatin dynamics reflect cell types within lineages. Sort-assisted single-cell chromatin immunocleavage (sortChIC) combines single-cell histone modification profiling with fluorescence-activated cell sorting (FACS), enabling the study of rare cell populations. H3K4me1/H3K4me3, H3K9me3 and H3K27me3 profiling of blood suggest a model of lineage-shared repressive and cell type-specific active chromatin.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-022-01260-3</identifier><identifier>PMID: 36539617</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/136/532 ; 631/1647/514/1948 ; 631/208/177 ; 631/337/176 ; Agriculture ; Animal Genetics and Genomics ; Animals ; Antibodies ; Biomedical and Life Sciences ; Biomedicine ; Blood ; Bone marrow ; Cancer Research ; Cell cycle ; Cell differentiation ; Cell Differentiation - genetics ; Cell Lineage - genetics ; Cells (biology) ; Chromatin ; Chromatin - genetics ; Differentiation ; Epigenesis, Genetic ; Euchromatin ; Gene expression ; Gene Function ; Genomes ; Hematopoiesis ; Hematopoiesis - genetics ; Hematopoietic stem cells ; Heterochromatin ; Heterochromatin - genetics ; Histones ; Human Genetics ; Mice ; Post-translation ; Progenitor cells ; technical-report ; Trajectory analysis ; Transcription factors</subject><ispartof>Nature genetics, 2023-02, Vol.55 (2), p.333-345</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>Copyright Nature Publishing Group Feb 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c505a5037ac8d60dd4b52d9cb498aa8c2b8d909647240d6a2765739da898ef973</citedby><cites>FETCH-LOGICAL-c474t-c505a5037ac8d60dd4b52d9cb498aa8c2b8d909647240d6a2765739da898ef973</cites><orcidid>0000-0002-4898-2862 ; 0000-0003-1732-1559 ; 0000-0001-7437-8901 ; 0000-0002-5570-9338 ; 0000-0002-9442-3551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-022-01260-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-022-01260-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36539617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeller, Peter</creatorcontrib><creatorcontrib>Yeung, Jake</creatorcontrib><creatorcontrib>Viñas Gaza, Helena</creatorcontrib><creatorcontrib>de Barbanson, Buys Anton</creatorcontrib><creatorcontrib>Bhardwaj, Vivek</creatorcontrib><creatorcontrib>Florescu, Maria</creatorcontrib><creatorcontrib>van der Linden, Reinier</creatorcontrib><creatorcontrib>van Oudenaarden, Alexander</creatorcontrib><title>Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Post-translational histone modifications modulate chromatin activity to affect gene expression. How chromatin states underlie lineage choice in single cells is relatively unexplored. We develop sort-assisted single-cell chromatin immunocleavage (sortChIC) and map active (H3K4me1 and H3K4me3) and repressive (H3K27me3 and H3K9me3) histone modifications in the mouse bone marrow. During differentiation, hematopoietic stem and progenitor cells (HSPCs) acquire active chromatin states mediated by cell-type-specifying transcription factors, which are unique for each lineage. By contrast, most alterations in repressive marks during differentiation occur independent of the final cell type. Chromatin trajectory analysis shows that lineage choice at the chromatin level occurs at the progenitor stage. Joint profiling of H3K4me1 and H3K9me3 demonstrates that cell types within the myeloid lineage have distinct active chromatin but share similar myeloid-specific heterochromatin states. This implies a hierarchical regulation of chromatin during hematopoiesis: heterochromatin dynamics distinguish differentiation trajectories and lineages, while euchromatin dynamics reflect cell types within lineages. Sort-assisted single-cell chromatin immunocleavage (sortChIC) combines single-cell histone modification profiling with fluorescence-activated cell sorting (FACS), enabling the study of rare cell populations. H3K4me1/H3K4me3, H3K9me3 and H3K27me3 profiling of blood suggest a model of lineage-shared repressive and cell type-specific active chromatin.</description><subject>631/136/532</subject><subject>631/1647/514/1948</subject><subject>631/208/177</subject><subject>631/337/176</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood</subject><subject>Bone marrow</subject><subject>Cancer Research</subject><subject>Cell cycle</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Lineage - genetics</subject><subject>Cells (biology)</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Differentiation</subject><subject>Epigenesis, Genetic</subject><subject>Euchromatin</subject><subject>Gene expression</subject><subject>Gene Function</subject><subject>Genomes</subject><subject>Hematopoiesis</subject><subject>Hematopoiesis - genetics</subject><subject>Hematopoietic stem cells</subject><subject>Heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>Histones</subject><subject>Human Genetics</subject><subject>Mice</subject><subject>Post-translation</subject><subject>Progenitor cells</subject><subject>technical-report</subject><subject>Trajectory analysis</subject><subject>Transcription factors</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtrFTEYhoNY7EX_gAsZcOMm9ss92Qhy0FoouGi7DjlJTidlZnJMZoT-ezOeWi8LVwnJ877f5UXoNYH3BJg-r5wIrTFQioFQCZg9QydEcImJIvp5u4MkmAOTx-i01nsAwjnoF-iYScGMJOoE3Vyn6W6I2Mdh6Gou86a_3HQpxGlOuxRr16dYXPF98m7ofF_y6OY0deFhcmPytQtLaQ5dH9t73ucmSfUlOtq5ocZXj-cZuv386WbzBV99vbjcfLzCnis-Yy9AOAFMOa-DhBD4VtBg_JYb7Zz2dKuDASO5ohyCdFRJoZgJThsdd0axM_Th4LtftmMMvjVd3GD3JY2uPNjskv37Z0q9vcvfrTFUME2awbtHg5K_LbHOdkx1XYWbYl6qpUpIqQhXK_r2H_Q-L2Vq4zVKKdCSwkrRA-VLrrXE3VMzBOwamj2EZlto9mdoljXRmz_HeJL8SqkB7ADU_brsWH7X_o_tDyQeo34</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zeller, Peter</creator><creator>Yeung, Jake</creator><creator>Viñas Gaza, Helena</creator><creator>de Barbanson, Buys Anton</creator><creator>Bhardwaj, Vivek</creator><creator>Florescu, Maria</creator><creator>van der Linden, Reinier</creator><creator>van Oudenaarden, Alexander</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4898-2862</orcidid><orcidid>https://orcid.org/0000-0003-1732-1559</orcidid><orcidid>https://orcid.org/0000-0001-7437-8901</orcidid><orcidid>https://orcid.org/0000-0002-5570-9338</orcidid><orcidid>https://orcid.org/0000-0002-9442-3551</orcidid></search><sort><creationdate>20230201</creationdate><title>Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis</title><author>Zeller, Peter ; Yeung, Jake ; Viñas Gaza, Helena ; de Barbanson, Buys Anton ; Bhardwaj, Vivek ; Florescu, Maria ; van der Linden, Reinier ; van Oudenaarden, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c505a5037ac8d60dd4b52d9cb498aa8c2b8d909647240d6a2765739da898ef973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/136/532</topic><topic>631/1647/514/1948</topic><topic>631/208/177</topic><topic>631/337/176</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood</topic><topic>Bone marrow</topic><topic>Cancer Research</topic><topic>Cell cycle</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Lineage - genetics</topic><topic>Cells (biology)</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Differentiation</topic><topic>Epigenesis, Genetic</topic><topic>Euchromatin</topic><topic>Gene expression</topic><topic>Gene Function</topic><topic>Genomes</topic><topic>Hematopoiesis</topic><topic>Hematopoiesis - genetics</topic><topic>Hematopoietic stem cells</topic><topic>Heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>Histones</topic><topic>Human Genetics</topic><topic>Mice</topic><topic>Post-translation</topic><topic>Progenitor cells</topic><topic>technical-report</topic><topic>Trajectory analysis</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeller, Peter</creatorcontrib><creatorcontrib>Yeung, Jake</creatorcontrib><creatorcontrib>Viñas Gaza, Helena</creatorcontrib><creatorcontrib>de Barbanson, Buys Anton</creatorcontrib><creatorcontrib>Bhardwaj, Vivek</creatorcontrib><creatorcontrib>Florescu, Maria</creatorcontrib><creatorcontrib>van der Linden, Reinier</creatorcontrib><creatorcontrib>van Oudenaarden, Alexander</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeller, Peter</au><au>Yeung, Jake</au><au>Viñas Gaza, Helena</au><au>de Barbanson, Buys Anton</au><au>Bhardwaj, Vivek</au><au>Florescu, Maria</au><au>van der Linden, Reinier</au><au>van Oudenaarden, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>55</volume><issue>2</issue><spage>333</spage><epage>345</epage><pages>333-345</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Post-translational histone modifications modulate chromatin activity to affect gene expression. How chromatin states underlie lineage choice in single cells is relatively unexplored. We develop sort-assisted single-cell chromatin immunocleavage (sortChIC) and map active (H3K4me1 and H3K4me3) and repressive (H3K27me3 and H3K9me3) histone modifications in the mouse bone marrow. During differentiation, hematopoietic stem and progenitor cells (HSPCs) acquire active chromatin states mediated by cell-type-specifying transcription factors, which are unique for each lineage. By contrast, most alterations in repressive marks during differentiation occur independent of the final cell type. Chromatin trajectory analysis shows that lineage choice at the chromatin level occurs at the progenitor stage. Joint profiling of H3K4me1 and H3K9me3 demonstrates that cell types within the myeloid lineage have distinct active chromatin but share similar myeloid-specific heterochromatin states. This implies a hierarchical regulation of chromatin during hematopoiesis: heterochromatin dynamics distinguish differentiation trajectories and lineages, while euchromatin dynamics reflect cell types within lineages. Sort-assisted single-cell chromatin immunocleavage (sortChIC) combines single-cell histone modification profiling with fluorescence-activated cell sorting (FACS), enabling the study of rare cell populations. H3K4me1/H3K4me3, H3K9me3 and H3K27me3 profiling of blood suggest a model of lineage-shared repressive and cell type-specific active chromatin.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>36539617</pmid><doi>10.1038/s41588-022-01260-3</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4898-2862</orcidid><orcidid>https://orcid.org/0000-0003-1732-1559</orcidid><orcidid>https://orcid.org/0000-0001-7437-8901</orcidid><orcidid>https://orcid.org/0000-0002-5570-9338</orcidid><orcidid>https://orcid.org/0000-0002-9442-3551</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2023-02, Vol.55 (2), p.333-345
issn 1061-4036
1546-1718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9925381
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/136/532
631/1647/514/1948
631/208/177
631/337/176
Agriculture
Animal Genetics and Genomics
Animals
Antibodies
Biomedical and Life Sciences
Biomedicine
Blood
Bone marrow
Cancer Research
Cell cycle
Cell differentiation
Cell Differentiation - genetics
Cell Lineage - genetics
Cells (biology)
Chromatin
Chromatin - genetics
Differentiation
Epigenesis, Genetic
Euchromatin
Gene expression
Gene Function
Genomes
Hematopoiesis
Hematopoiesis - genetics
Hematopoietic stem cells
Heterochromatin
Heterochromatin - genetics
Histones
Human Genetics
Mice
Post-translation
Progenitor cells
technical-report
Trajectory analysis
Transcription factors
title Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-cell%20sortChIC%20identifies%20hierarchical%20chromatin%20dynamics%20during%20hematopoiesis&rft.jtitle=Nature%20genetics&rft.au=Zeller,%20Peter&rft.date=2023-02-01&rft.volume=55&rft.issue=2&rft.spage=333&rft.epage=345&rft.pages=333-345&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-022-01260-3&rft_dat=%3Cproquest_pubme%3E2756671471%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2777086201&rft_id=info:pmid/36539617&rfr_iscdi=true