Congenital heart disease-associated pulmonary dysplasia and its underlying mechanisms

Clinical observation indicates that exercise capacity, an important determinant of survival in patients with congenital heart disease (CHD), is most decreased in children with reduced pulmonary blood flow (RPF). However, the underlying mechanism remains unclear. Here, we obtained human RPF lung samp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Lung cellular and molecular physiology 2023-02, Vol.324 (2), p.L89-L101
Hauptverfasser: Li, De-Bao, Xu, Xiu-Xia, Hu, Yu-Qing, Cui, Qing, Xiao, Ying-Ying, Sun, Si-Juan, Chen, Li-Jun, Ye, Lin-Cai, Sun, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page L101
container_issue 2
container_start_page L89
container_title American journal of physiology. Lung cellular and molecular physiology
container_volume 324
creator Li, De-Bao
Xu, Xiu-Xia
Hu, Yu-Qing
Cui, Qing
Xiao, Ying-Ying
Sun, Si-Juan
Chen, Li-Jun
Ye, Lin-Cai
Sun, Qi
description Clinical observation indicates that exercise capacity, an important determinant of survival in patients with congenital heart disease (CHD), is most decreased in children with reduced pulmonary blood flow (RPF). However, the underlying mechanism remains unclear. Here, we obtained human RPF lung samples from children with tetralogy of Fallot as well as piglet and rat RPF lung samples from animals with pulmonary artery banding surgery. We observed impaired alveolarization and vascularization, the main characteristics of pulmonary dysplasia, in the lungs of RPF infants, piglets, and rats. RPF caused smaller lungs, cyanosis, and body weight loss in neonatal rats and reduced the number of alveolar type 2 cells. RNA sequencing demonstrated that RPF induced the downregulation of metabolism and migration, a key biological process of late alveolar development, and the upregulation of immune response, which was confirmed by flow cytometry and cytokine detection. In addition, the immunosuppressant cyclosporine A rescued pulmonary dysplasia and increased the expression of the Wnt signaling pathway, which is the driver of postnatal lung development. We concluded that RPF results in pulmonary dysplasia, which may account for the reduced exercise capacity of patients with CHD with RPF. The underlying mechanism is associated with immune response activation, and immunosuppressants have a therapeutic effect in CHD-associated pulmonary dysplasia.
doi_str_mv 10.1152/ajplung.00195.2022
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9925164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771384538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-15f5ad0b0da11a8806f00587770b8b01ab30576485deff6580f6b89aa8cc7b03</originalsourceid><addsrcrecordid>eNpdkU1r3DAQhkVpaNJt_0APxdBLL96MZOvDl0JZ-gWBXpKzGFvyrhZZciW7sP8-SrINbU8zMO-8vDMPIe8obCnl7BqPs1_DfgtAO75lwNgLclUGrKYc2pelhxZqEMAvyeucjwDAAcQrctmIVrKGdVfkbhfD3ga3oK8OFtNSGZctZltjznFwuFhTzaufYsB0qswpzx6zwwqDqdySqzUYm_zJhX012eGAweUpvyEXI_ps357rhtx-_XK7-17f_Pz2Y_f5ph7aBpYSc-RooAeDlKJSIMYSUUkpoVc9UOwb4FK0ihs7joIrGEWvOkQ1DLKHZkM-PdnOaz9ZM9iwJPR6Tm4qYXVEp_-dBHfQ-_hbdx3jVLTF4OPZIMVfq82LnlwerPcYbFyzZrL8SYquPGtDPvwnPcY1hXJdUUnaqJY3qqjYk2pIMedkx-cwFPQDNH2Gph-h6QdoZen932c8r_yh1NwDWxuWZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771384538</pqid></control><display><type>article</type><title>Congenital heart disease-associated pulmonary dysplasia and its underlying mechanisms</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Li, De-Bao ; Xu, Xiu-Xia ; Hu, Yu-Qing ; Cui, Qing ; Xiao, Ying-Ying ; Sun, Si-Juan ; Chen, Li-Jun ; Ye, Lin-Cai ; Sun, Qi</creator><creatorcontrib>Li, De-Bao ; Xu, Xiu-Xia ; Hu, Yu-Qing ; Cui, Qing ; Xiao, Ying-Ying ; Sun, Si-Juan ; Chen, Li-Jun ; Ye, Lin-Cai ; Sun, Qi</creatorcontrib><description>Clinical observation indicates that exercise capacity, an important determinant of survival in patients with congenital heart disease (CHD), is most decreased in children with reduced pulmonary blood flow (RPF). However, the underlying mechanism remains unclear. Here, we obtained human RPF lung samples from children with tetralogy of Fallot as well as piglet and rat RPF lung samples from animals with pulmonary artery banding surgery. We observed impaired alveolarization and vascularization, the main characteristics of pulmonary dysplasia, in the lungs of RPF infants, piglets, and rats. RPF caused smaller lungs, cyanosis, and body weight loss in neonatal rats and reduced the number of alveolar type 2 cells. RNA sequencing demonstrated that RPF induced the downregulation of metabolism and migration, a key biological process of late alveolar development, and the upregulation of immune response, which was confirmed by flow cytometry and cytokine detection. In addition, the immunosuppressant cyclosporine A rescued pulmonary dysplasia and increased the expression of the Wnt signaling pathway, which is the driver of postnatal lung development. We concluded that RPF results in pulmonary dysplasia, which may account for the reduced exercise capacity of patients with CHD with RPF. The underlying mechanism is associated with immune response activation, and immunosuppressants have a therapeutic effect in CHD-associated pulmonary dysplasia.</description><identifier>ISSN: 1040-0605</identifier><identifier>EISSN: 1522-1504</identifier><identifier>DOI: 10.1152/ajplung.00195.2022</identifier><identifier>PMID: 36472329</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Alveoli ; Animals ; Animals, Newborn ; Biological activity ; Blood flow ; Body weight ; Body weight loss ; Cardiovascular disease ; Cardiovascular diseases ; Child ; Congenital diseases ; Cyanosis ; Cyclosporins ; Dysplasia ; Flow cytometry ; Gene sequencing ; Heart Defects, Congenital - complications ; Heart Defects, Congenital - metabolism ; Heart Defects, Congenital - pathology ; Heart diseases ; Humans ; Hyperplasia - metabolism ; Hyperplasia - pathology ; Immune response ; Immune system ; Immunosuppressive agents ; Infant ; Lung - metabolism ; Lung diseases ; Lungs ; Metabolism ; Neonates ; Patients ; Pulmonary Alveoli - metabolism ; Pulmonary arteries ; Pulmonary artery ; Pulmonary Circulation ; Rats ; Signal transduction ; Swine ; Tetralogy of Fallot ; Vascularization ; Weight loss ; Wnt protein</subject><ispartof>American journal of physiology. Lung cellular and molecular physiology, 2023-02, Vol.324 (2), p.L89-L101</ispartof><rights>Copyright American Physiological Society Feb 2023</rights><rights>Copyright © 2023 The Authors. 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-15f5ad0b0da11a8806f00587770b8b01ab30576485deff6580f6b89aa8cc7b03</citedby><cites>FETCH-LOGICAL-c430t-15f5ad0b0da11a8806f00587770b8b01ab30576485deff6580f6b89aa8cc7b03</cites><orcidid>0000-0002-1495-0942 ; 0000-0001-5182-4278 ; 0000-0001-5514-2899 ; 0000-0003-4691-3780 ; 0000-0001-8808-2810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3039,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36472329$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, De-Bao</creatorcontrib><creatorcontrib>Xu, Xiu-Xia</creatorcontrib><creatorcontrib>Hu, Yu-Qing</creatorcontrib><creatorcontrib>Cui, Qing</creatorcontrib><creatorcontrib>Xiao, Ying-Ying</creatorcontrib><creatorcontrib>Sun, Si-Juan</creatorcontrib><creatorcontrib>Chen, Li-Jun</creatorcontrib><creatorcontrib>Ye, Lin-Cai</creatorcontrib><creatorcontrib>Sun, Qi</creatorcontrib><title>Congenital heart disease-associated pulmonary dysplasia and its underlying mechanisms</title><title>American journal of physiology. Lung cellular and molecular physiology</title><addtitle>Am J Physiol Lung Cell Mol Physiol</addtitle><description>Clinical observation indicates that exercise capacity, an important determinant of survival in patients with congenital heart disease (CHD), is most decreased in children with reduced pulmonary blood flow (RPF). However, the underlying mechanism remains unclear. Here, we obtained human RPF lung samples from children with tetralogy of Fallot as well as piglet and rat RPF lung samples from animals with pulmonary artery banding surgery. We observed impaired alveolarization and vascularization, the main characteristics of pulmonary dysplasia, in the lungs of RPF infants, piglets, and rats. RPF caused smaller lungs, cyanosis, and body weight loss in neonatal rats and reduced the number of alveolar type 2 cells. RNA sequencing demonstrated that RPF induced the downregulation of metabolism and migration, a key biological process of late alveolar development, and the upregulation of immune response, which was confirmed by flow cytometry and cytokine detection. In addition, the immunosuppressant cyclosporine A rescued pulmonary dysplasia and increased the expression of the Wnt signaling pathway, which is the driver of postnatal lung development. We concluded that RPF results in pulmonary dysplasia, which may account for the reduced exercise capacity of patients with CHD with RPF. The underlying mechanism is associated with immune response activation, and immunosuppressants have a therapeutic effect in CHD-associated pulmonary dysplasia.</description><subject>Alveoli</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biological activity</subject><subject>Blood flow</subject><subject>Body weight</subject><subject>Body weight loss</subject><subject>Cardiovascular disease</subject><subject>Cardiovascular diseases</subject><subject>Child</subject><subject>Congenital diseases</subject><subject>Cyanosis</subject><subject>Cyclosporins</subject><subject>Dysplasia</subject><subject>Flow cytometry</subject><subject>Gene sequencing</subject><subject>Heart Defects, Congenital - complications</subject><subject>Heart Defects, Congenital - metabolism</subject><subject>Heart Defects, Congenital - pathology</subject><subject>Heart diseases</subject><subject>Humans</subject><subject>Hyperplasia - metabolism</subject><subject>Hyperplasia - pathology</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunosuppressive agents</subject><subject>Infant</subject><subject>Lung - metabolism</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Metabolism</subject><subject>Neonates</subject><subject>Patients</subject><subject>Pulmonary Alveoli - metabolism</subject><subject>Pulmonary arteries</subject><subject>Pulmonary artery</subject><subject>Pulmonary Circulation</subject><subject>Rats</subject><subject>Signal transduction</subject><subject>Swine</subject><subject>Tetralogy of Fallot</subject><subject>Vascularization</subject><subject>Weight loss</subject><subject>Wnt protein</subject><issn>1040-0605</issn><issn>1522-1504</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1r3DAQhkVpaNJt_0APxdBLL96MZOvDl0JZ-gWBXpKzGFvyrhZZciW7sP8-SrINbU8zMO-8vDMPIe8obCnl7BqPs1_DfgtAO75lwNgLclUGrKYc2pelhxZqEMAvyeucjwDAAcQrctmIVrKGdVfkbhfD3ga3oK8OFtNSGZctZltjznFwuFhTzaufYsB0qswpzx6zwwqDqdySqzUYm_zJhX012eGAweUpvyEXI_ps357rhtx-_XK7-17f_Pz2Y_f5ph7aBpYSc-RooAeDlKJSIMYSUUkpoVc9UOwb4FK0ihs7joIrGEWvOkQ1DLKHZkM-PdnOaz9ZM9iwJPR6Tm4qYXVEp_-dBHfQ-_hbdx3jVLTF4OPZIMVfq82LnlwerPcYbFyzZrL8SYquPGtDPvwnPcY1hXJdUUnaqJY3qqjYk2pIMedkx-cwFPQDNH2Gph-h6QdoZen932c8r_yh1NwDWxuWZg</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Li, De-Bao</creator><creator>Xu, Xiu-Xia</creator><creator>Hu, Yu-Qing</creator><creator>Cui, Qing</creator><creator>Xiao, Ying-Ying</creator><creator>Sun, Si-Juan</creator><creator>Chen, Li-Jun</creator><creator>Ye, Lin-Cai</creator><creator>Sun, Qi</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1495-0942</orcidid><orcidid>https://orcid.org/0000-0001-5182-4278</orcidid><orcidid>https://orcid.org/0000-0001-5514-2899</orcidid><orcidid>https://orcid.org/0000-0003-4691-3780</orcidid><orcidid>https://orcid.org/0000-0001-8808-2810</orcidid></search><sort><creationdate>20230201</creationdate><title>Congenital heart disease-associated pulmonary dysplasia and its underlying mechanisms</title><author>Li, De-Bao ; Xu, Xiu-Xia ; Hu, Yu-Qing ; Cui, Qing ; Xiao, Ying-Ying ; Sun, Si-Juan ; Chen, Li-Jun ; Ye, Lin-Cai ; Sun, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-15f5ad0b0da11a8806f00587770b8b01ab30576485deff6580f6b89aa8cc7b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alveoli</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biological activity</topic><topic>Blood flow</topic><topic>Body weight</topic><topic>Body weight loss</topic><topic>Cardiovascular disease</topic><topic>Cardiovascular diseases</topic><topic>Child</topic><topic>Congenital diseases</topic><topic>Cyanosis</topic><topic>Cyclosporins</topic><topic>Dysplasia</topic><topic>Flow cytometry</topic><topic>Gene sequencing</topic><topic>Heart Defects, Congenital - complications</topic><topic>Heart Defects, Congenital - metabolism</topic><topic>Heart Defects, Congenital - pathology</topic><topic>Heart diseases</topic><topic>Humans</topic><topic>Hyperplasia - metabolism</topic><topic>Hyperplasia - pathology</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunosuppressive agents</topic><topic>Infant</topic><topic>Lung - metabolism</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Metabolism</topic><topic>Neonates</topic><topic>Patients</topic><topic>Pulmonary Alveoli - metabolism</topic><topic>Pulmonary arteries</topic><topic>Pulmonary artery</topic><topic>Pulmonary Circulation</topic><topic>Rats</topic><topic>Signal transduction</topic><topic>Swine</topic><topic>Tetralogy of Fallot</topic><topic>Vascularization</topic><topic>Weight loss</topic><topic>Wnt protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, De-Bao</creatorcontrib><creatorcontrib>Xu, Xiu-Xia</creatorcontrib><creatorcontrib>Hu, Yu-Qing</creatorcontrib><creatorcontrib>Cui, Qing</creatorcontrib><creatorcontrib>Xiao, Ying-Ying</creatorcontrib><creatorcontrib>Sun, Si-Juan</creatorcontrib><creatorcontrib>Chen, Li-Jun</creatorcontrib><creatorcontrib>Ye, Lin-Cai</creatorcontrib><creatorcontrib>Sun, Qi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of physiology. Lung cellular and molecular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, De-Bao</au><au>Xu, Xiu-Xia</au><au>Hu, Yu-Qing</au><au>Cui, Qing</au><au>Xiao, Ying-Ying</au><au>Sun, Si-Juan</au><au>Chen, Li-Jun</au><au>Ye, Lin-Cai</au><au>Sun, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Congenital heart disease-associated pulmonary dysplasia and its underlying mechanisms</atitle><jtitle>American journal of physiology. Lung cellular and molecular physiology</jtitle><addtitle>Am J Physiol Lung Cell Mol Physiol</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>324</volume><issue>2</issue><spage>L89</spage><epage>L101</epage><pages>L89-L101</pages><issn>1040-0605</issn><eissn>1522-1504</eissn><abstract>Clinical observation indicates that exercise capacity, an important determinant of survival in patients with congenital heart disease (CHD), is most decreased in children with reduced pulmonary blood flow (RPF). However, the underlying mechanism remains unclear. Here, we obtained human RPF lung samples from children with tetralogy of Fallot as well as piglet and rat RPF lung samples from animals with pulmonary artery banding surgery. We observed impaired alveolarization and vascularization, the main characteristics of pulmonary dysplasia, in the lungs of RPF infants, piglets, and rats. RPF caused smaller lungs, cyanosis, and body weight loss in neonatal rats and reduced the number of alveolar type 2 cells. RNA sequencing demonstrated that RPF induced the downregulation of metabolism and migration, a key biological process of late alveolar development, and the upregulation of immune response, which was confirmed by flow cytometry and cytokine detection. In addition, the immunosuppressant cyclosporine A rescued pulmonary dysplasia and increased the expression of the Wnt signaling pathway, which is the driver of postnatal lung development. We concluded that RPF results in pulmonary dysplasia, which may account for the reduced exercise capacity of patients with CHD with RPF. The underlying mechanism is associated with immune response activation, and immunosuppressants have a therapeutic effect in CHD-associated pulmonary dysplasia.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>36472329</pmid><doi>10.1152/ajplung.00195.2022</doi><orcidid>https://orcid.org/0000-0002-1495-0942</orcidid><orcidid>https://orcid.org/0000-0001-5182-4278</orcidid><orcidid>https://orcid.org/0000-0001-5514-2899</orcidid><orcidid>https://orcid.org/0000-0003-4691-3780</orcidid><orcidid>https://orcid.org/0000-0001-8808-2810</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-0605
ispartof American journal of physiology. Lung cellular and molecular physiology, 2023-02, Vol.324 (2), p.L89-L101
issn 1040-0605
1522-1504
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9925164
source MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Alveoli
Animals
Animals, Newborn
Biological activity
Blood flow
Body weight
Body weight loss
Cardiovascular disease
Cardiovascular diseases
Child
Congenital diseases
Cyanosis
Cyclosporins
Dysplasia
Flow cytometry
Gene sequencing
Heart Defects, Congenital - complications
Heart Defects, Congenital - metabolism
Heart Defects, Congenital - pathology
Heart diseases
Humans
Hyperplasia - metabolism
Hyperplasia - pathology
Immune response
Immune system
Immunosuppressive agents
Infant
Lung - metabolism
Lung diseases
Lungs
Metabolism
Neonates
Patients
Pulmonary Alveoli - metabolism
Pulmonary arteries
Pulmonary artery
Pulmonary Circulation
Rats
Signal transduction
Swine
Tetralogy of Fallot
Vascularization
Weight loss
Wnt protein
title Congenital heart disease-associated pulmonary dysplasia and its underlying mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Congenital%20heart%20disease-associated%20pulmonary%20dysplasia%20and%20its%20underlying%20mechanisms&rft.jtitle=American%20journal%20of%20physiology.%20Lung%20cellular%20and%20molecular%20physiology&rft.au=Li,%20De-Bao&rft.date=2023-02-01&rft.volume=324&rft.issue=2&rft.spage=L89&rft.epage=L101&rft.pages=L89-L101&rft.issn=1040-0605&rft.eissn=1522-1504&rft_id=info:doi/10.1152/ajplung.00195.2022&rft_dat=%3Cproquest_pubme%3E2771384538%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771384538&rft_id=info:pmid/36472329&rfr_iscdi=true