Untargeted metabolomic profiling identifies serum metabolites associated with type 2 diabetes in a cross-sectional study of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study

Type 2 diabetes (T2D) is a complex chronic disease with substantial phenotypic heterogeneity affecting millions of individuals. Yet, its relevant metabolites and etiological pathways are not fully understood. The aim of this study is to assess a broad spectrum of metabolites related to T2D in a larg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology: endocrinology and metabolism 2023-02, Vol.324 (2), p.E167-E175
Hauptverfasser: Liu, Yuzhao, Gan, Lu, Zhao, Bin, Yu, Kai, Wang, Yangang, Männistö, Satu, Weinstein, Stephanie J, Huang, Jiaqi, Albanes, Demetrius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E175
container_issue 2
container_start_page E167
container_title American journal of physiology: endocrinology and metabolism
container_volume 324
creator Liu, Yuzhao
Gan, Lu
Zhao, Bin
Yu, Kai
Wang, Yangang
Männistö, Satu
Weinstein, Stephanie J
Huang, Jiaqi
Albanes, Demetrius
description Type 2 diabetes (T2D) is a complex chronic disease with substantial phenotypic heterogeneity affecting millions of individuals. Yet, its relevant metabolites and etiological pathways are not fully understood. The aim of this study is to assess a broad spectrum of metabolites related to T2D in a large population-based cohort. We conducted a metabolomic analysis of 4,281 male participants within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. The serum metabolomic analysis was performed using an LC-MS/GC-MS platform. Associations between 1,413 metabolites and T2D were examined using linear regression, controlling for important baseline risk factors. Standardized β-coefficients and standard errors (SEs) were computed to estimate the difference in metabolite concentrations. We identified 74 metabolites that were significantly associated with T2D based on the Bonferroni-corrected threshold ( < 3.5 × 10 ). The strongest signals associated with T2D were of carbohydrates origin, including glucose, 1,5-anhydroglucitol (1,5-AG), and mannose (β = 0.34, -0.91, and 0.41, respectively; all < 10 ). We found several chemical class pathways that were significantly associated with T2D, including carbohydrates ( = 1.3 × 10 ), amino acids ( = 2.7 × 10 ), energy ( = 1.5 × 10 ), and xenobiotics ( = 1.2 × 10 ). The strongest subpathway associations were seen for fructose-mannose-galactose metabolism, glycolysis-gluconeogenesis-pyruvate metabolism, fatty acid metabolism (acyl choline), and leucine-isoleucine-valine metabolism (all < 10 ). Our findings identified various metabolites and candidate chemical class pathways that can be characterized by glycolysis and gluconeogenesis metabolism, fructose-mannose-galactose metabolism, branched-chain amino acids, diacylglycerol, acyl cholines, fatty acid oxidation, and mitochondrial dysfunction. These metabolomic patterns may provide new additional evidence and potential insights relevant to the molecular basis of insulin resistance and the etiology of T2D.
doi_str_mv 10.1152/ajpendo.00287.2022
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9925157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754501499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-d18832f25118af119d2e8bdcef9ad2f6cd7ca05411a54a4e0179eab6d4603d9d3</originalsourceid><addsrcrecordid>eNpVkdtq3DAQhk1pabZpX6AXRZcJ1FtJtny4KWxMTxBooZtrMZbGawVbciU5ZV-uz1Y72YT2SqD_MMN8SfKW0S1jgn-A2wmtdltKeVVuOeX8WbJZBJ4yIcTzZENZnaWsyuuz5FUIt5TSUuT8ZXKWFYIVnOeb5M-NjeAPGFGTESO0bnCjUWTyrjODsQdiNNpoOoOBBPTz-GgzcfmBEJwysKZ_m9iTeJyQcKINtLjqxhIgyrsQ0oAqGmdhICHO-khcR2KPZDdMPaR7p9zUo3fDe3K19KcNeBfRImnAKvTkh8e7dQ9nycVuf9Vckp9ry-vkRQdDwDen9zy5-fxp33xNr79_-dbsrlOViSqmmlVVxjsuGKugY6zWHKtWK-xq0LwrlC4VUJEzBiKHHCkra4S20HlBM13r7Dz5-NA7ze2IS9BGD4OcvBnBH6UDI_9XrOnlwd3Jul6GinIpuDgVePdrxhDlaILCYQCLbg6SL2QEZXldL1b-YL2_m8fuaQyjcgUvT-DlPXi5gl9C7_5d8CnySDr7C4S0sRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754501499</pqid></control><display><type>article</type><title>Untargeted metabolomic profiling identifies serum metabolites associated with type 2 diabetes in a cross-sectional study of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Yuzhao ; Gan, Lu ; Zhao, Bin ; Yu, Kai ; Wang, Yangang ; Männistö, Satu ; Weinstein, Stephanie J ; Huang, Jiaqi ; Albanes, Demetrius</creator><creatorcontrib>Liu, Yuzhao ; Gan, Lu ; Zhao, Bin ; Yu, Kai ; Wang, Yangang ; Männistö, Satu ; Weinstein, Stephanie J ; Huang, Jiaqi ; Albanes, Demetrius</creatorcontrib><description>Type 2 diabetes (T2D) is a complex chronic disease with substantial phenotypic heterogeneity affecting millions of individuals. Yet, its relevant metabolites and etiological pathways are not fully understood. The aim of this study is to assess a broad spectrum of metabolites related to T2D in a large population-based cohort. We conducted a metabolomic analysis of 4,281 male participants within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. The serum metabolomic analysis was performed using an LC-MS/GC-MS platform. Associations between 1,413 metabolites and T2D were examined using linear regression, controlling for important baseline risk factors. Standardized β-coefficients and standard errors (SEs) were computed to estimate the difference in metabolite concentrations. We identified 74 metabolites that were significantly associated with T2D based on the Bonferroni-corrected threshold ( &lt; 3.5 × 10 ). The strongest signals associated with T2D were of carbohydrates origin, including glucose, 1,5-anhydroglucitol (1,5-AG), and mannose (β = 0.34, -0.91, and 0.41, respectively; all &lt; 10 ). We found several chemical class pathways that were significantly associated with T2D, including carbohydrates ( = 1.3 × 10 ), amino acids ( = 2.7 × 10 ), energy ( = 1.5 × 10 ), and xenobiotics ( = 1.2 × 10 ). The strongest subpathway associations were seen for fructose-mannose-galactose metabolism, glycolysis-gluconeogenesis-pyruvate metabolism, fatty acid metabolism (acyl choline), and leucine-isoleucine-valine metabolism (all &lt; 10 ). Our findings identified various metabolites and candidate chemical class pathways that can be characterized by glycolysis and gluconeogenesis metabolism, fructose-mannose-galactose metabolism, branched-chain amino acids, diacylglycerol, acyl cholines, fatty acid oxidation, and mitochondrial dysfunction. These metabolomic patterns may provide new additional evidence and potential insights relevant to the molecular basis of insulin resistance and the etiology of T2D.</description><identifier>ISSN: 0193-1849</identifier><identifier>EISSN: 1522-1555</identifier><identifier>DOI: 10.1152/ajpendo.00287.2022</identifier><identifier>PMID: 36516224</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>alpha-Tocopherol ; beta Carotene ; Cross-Sectional Studies ; Diabetes Mellitus, Type 2 - metabolism ; Fatty Acids ; Galactose ; Humans ; Male ; Mannose ; Metabolomics ; Neoplasms</subject><ispartof>American journal of physiology: endocrinology and metabolism, 2023-02, Vol.324 (2), p.E167-E175</ispartof><rights>Published by the American Physiological Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-d18832f25118af119d2e8bdcef9ad2f6cd7ca05411a54a4e0179eab6d4603d9d3</citedby><cites>FETCH-LOGICAL-c358t-d18832f25118af119d2e8bdcef9ad2f6cd7ca05411a54a4e0179eab6d4603d9d3</cites><orcidid>0000-0001-7065-2416 ; 0000-0002-7808-9477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3026,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36516224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yuzhao</creatorcontrib><creatorcontrib>Gan, Lu</creatorcontrib><creatorcontrib>Zhao, Bin</creatorcontrib><creatorcontrib>Yu, Kai</creatorcontrib><creatorcontrib>Wang, Yangang</creatorcontrib><creatorcontrib>Männistö, Satu</creatorcontrib><creatorcontrib>Weinstein, Stephanie J</creatorcontrib><creatorcontrib>Huang, Jiaqi</creatorcontrib><creatorcontrib>Albanes, Demetrius</creatorcontrib><title>Untargeted metabolomic profiling identifies serum metabolites associated with type 2 diabetes in a cross-sectional study of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study</title><title>American journal of physiology: endocrinology and metabolism</title><addtitle>Am J Physiol Endocrinol Metab</addtitle><description>Type 2 diabetes (T2D) is a complex chronic disease with substantial phenotypic heterogeneity affecting millions of individuals. Yet, its relevant metabolites and etiological pathways are not fully understood. The aim of this study is to assess a broad spectrum of metabolites related to T2D in a large population-based cohort. We conducted a metabolomic analysis of 4,281 male participants within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. The serum metabolomic analysis was performed using an LC-MS/GC-MS platform. Associations between 1,413 metabolites and T2D were examined using linear regression, controlling for important baseline risk factors. Standardized β-coefficients and standard errors (SEs) were computed to estimate the difference in metabolite concentrations. We identified 74 metabolites that were significantly associated with T2D based on the Bonferroni-corrected threshold ( &lt; 3.5 × 10 ). The strongest signals associated with T2D were of carbohydrates origin, including glucose, 1,5-anhydroglucitol (1,5-AG), and mannose (β = 0.34, -0.91, and 0.41, respectively; all &lt; 10 ). We found several chemical class pathways that were significantly associated with T2D, including carbohydrates ( = 1.3 × 10 ), amino acids ( = 2.7 × 10 ), energy ( = 1.5 × 10 ), and xenobiotics ( = 1.2 × 10 ). The strongest subpathway associations were seen for fructose-mannose-galactose metabolism, glycolysis-gluconeogenesis-pyruvate metabolism, fatty acid metabolism (acyl choline), and leucine-isoleucine-valine metabolism (all &lt; 10 ). Our findings identified various metabolites and candidate chemical class pathways that can be characterized by glycolysis and gluconeogenesis metabolism, fructose-mannose-galactose metabolism, branched-chain amino acids, diacylglycerol, acyl cholines, fatty acid oxidation, and mitochondrial dysfunction. These metabolomic patterns may provide new additional evidence and potential insights relevant to the molecular basis of insulin resistance and the etiology of T2D.</description><subject>alpha-Tocopherol</subject><subject>beta Carotene</subject><subject>Cross-Sectional Studies</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Fatty Acids</subject><subject>Galactose</subject><subject>Humans</subject><subject>Male</subject><subject>Mannose</subject><subject>Metabolomics</subject><subject>Neoplasms</subject><issn>0193-1849</issn><issn>1522-1555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkdtq3DAQhk1pabZpX6AXRZcJ1FtJtny4KWxMTxBooZtrMZbGawVbciU5ZV-uz1Y72YT2SqD_MMN8SfKW0S1jgn-A2wmtdltKeVVuOeX8WbJZBJ4yIcTzZENZnaWsyuuz5FUIt5TSUuT8ZXKWFYIVnOeb5M-NjeAPGFGTESO0bnCjUWTyrjODsQdiNNpoOoOBBPTz-GgzcfmBEJwysKZ_m9iTeJyQcKINtLjqxhIgyrsQ0oAqGmdhICHO-khcR2KPZDdMPaR7p9zUo3fDe3K19KcNeBfRImnAKvTkh8e7dQ9nycVuf9Vckp9ry-vkRQdDwDen9zy5-fxp33xNr79_-dbsrlOViSqmmlVVxjsuGKugY6zWHKtWK-xq0LwrlC4VUJEzBiKHHCkra4S20HlBM13r7Dz5-NA7ze2IS9BGD4OcvBnBH6UDI_9XrOnlwd3Jul6GinIpuDgVePdrxhDlaILCYQCLbg6SL2QEZXldL1b-YL2_m8fuaQyjcgUvT-DlPXi5gl9C7_5d8CnySDr7C4S0sRw</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Liu, Yuzhao</creator><creator>Gan, Lu</creator><creator>Zhao, Bin</creator><creator>Yu, Kai</creator><creator>Wang, Yangang</creator><creator>Männistö, Satu</creator><creator>Weinstein, Stephanie J</creator><creator>Huang, Jiaqi</creator><creator>Albanes, Demetrius</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7065-2416</orcidid><orcidid>https://orcid.org/0000-0002-7808-9477</orcidid></search><sort><creationdate>20230201</creationdate><title>Untargeted metabolomic profiling identifies serum metabolites associated with type 2 diabetes in a cross-sectional study of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study</title><author>Liu, Yuzhao ; Gan, Lu ; Zhao, Bin ; Yu, Kai ; Wang, Yangang ; Männistö, Satu ; Weinstein, Stephanie J ; Huang, Jiaqi ; Albanes, Demetrius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-d18832f25118af119d2e8bdcef9ad2f6cd7ca05411a54a4e0179eab6d4603d9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>alpha-Tocopherol</topic><topic>beta Carotene</topic><topic>Cross-Sectional Studies</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Fatty Acids</topic><topic>Galactose</topic><topic>Humans</topic><topic>Male</topic><topic>Mannose</topic><topic>Metabolomics</topic><topic>Neoplasms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuzhao</creatorcontrib><creatorcontrib>Gan, Lu</creatorcontrib><creatorcontrib>Zhao, Bin</creatorcontrib><creatorcontrib>Yu, Kai</creatorcontrib><creatorcontrib>Wang, Yangang</creatorcontrib><creatorcontrib>Männistö, Satu</creatorcontrib><creatorcontrib>Weinstein, Stephanie J</creatorcontrib><creatorcontrib>Huang, Jiaqi</creatorcontrib><creatorcontrib>Albanes, Demetrius</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of physiology: endocrinology and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuzhao</au><au>Gan, Lu</au><au>Zhao, Bin</au><au>Yu, Kai</au><au>Wang, Yangang</au><au>Männistö, Satu</au><au>Weinstein, Stephanie J</au><au>Huang, Jiaqi</au><au>Albanes, Demetrius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Untargeted metabolomic profiling identifies serum metabolites associated with type 2 diabetes in a cross-sectional study of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study</atitle><jtitle>American journal of physiology: endocrinology and metabolism</jtitle><addtitle>Am J Physiol Endocrinol Metab</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>324</volume><issue>2</issue><spage>E167</spage><epage>E175</epage><pages>E167-E175</pages><issn>0193-1849</issn><eissn>1522-1555</eissn><abstract>Type 2 diabetes (T2D) is a complex chronic disease with substantial phenotypic heterogeneity affecting millions of individuals. Yet, its relevant metabolites and etiological pathways are not fully understood. The aim of this study is to assess a broad spectrum of metabolites related to T2D in a large population-based cohort. We conducted a metabolomic analysis of 4,281 male participants within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. The serum metabolomic analysis was performed using an LC-MS/GC-MS platform. Associations between 1,413 metabolites and T2D were examined using linear regression, controlling for important baseline risk factors. Standardized β-coefficients and standard errors (SEs) were computed to estimate the difference in metabolite concentrations. We identified 74 metabolites that were significantly associated with T2D based on the Bonferroni-corrected threshold ( &lt; 3.5 × 10 ). The strongest signals associated with T2D were of carbohydrates origin, including glucose, 1,5-anhydroglucitol (1,5-AG), and mannose (β = 0.34, -0.91, and 0.41, respectively; all &lt; 10 ). We found several chemical class pathways that were significantly associated with T2D, including carbohydrates ( = 1.3 × 10 ), amino acids ( = 2.7 × 10 ), energy ( = 1.5 × 10 ), and xenobiotics ( = 1.2 × 10 ). The strongest subpathway associations were seen for fructose-mannose-galactose metabolism, glycolysis-gluconeogenesis-pyruvate metabolism, fatty acid metabolism (acyl choline), and leucine-isoleucine-valine metabolism (all &lt; 10 ). Our findings identified various metabolites and candidate chemical class pathways that can be characterized by glycolysis and gluconeogenesis metabolism, fructose-mannose-galactose metabolism, branched-chain amino acids, diacylglycerol, acyl cholines, fatty acid oxidation, and mitochondrial dysfunction. These metabolomic patterns may provide new additional evidence and potential insights relevant to the molecular basis of insulin resistance and the etiology of T2D.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>36516224</pmid><doi>10.1152/ajpendo.00287.2022</doi><orcidid>https://orcid.org/0000-0001-7065-2416</orcidid><orcidid>https://orcid.org/0000-0002-7808-9477</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0193-1849
ispartof American journal of physiology: endocrinology and metabolism, 2023-02, Vol.324 (2), p.E167-E175
issn 0193-1849
1522-1555
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9925157
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects alpha-Tocopherol
beta Carotene
Cross-Sectional Studies
Diabetes Mellitus, Type 2 - metabolism
Fatty Acids
Galactose
Humans
Male
Mannose
Metabolomics
Neoplasms
title Untargeted metabolomic profiling identifies serum metabolites associated with type 2 diabetes in a cross-sectional study of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A15%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Untargeted%20metabolomic%20profiling%20identifies%20serum%20metabolites%20associated%20with%20type%202%20diabetes%20in%20a%20cross-sectional%20study%20of%20the%20Alpha-Tocopherol,%20Beta-Carotene%20Cancer%20Prevention%20(ATBC)%20Study&rft.jtitle=American%20journal%20of%20physiology:%20endocrinology%20and%20metabolism&rft.au=Liu,%20Yuzhao&rft.date=2023-02-01&rft.volume=324&rft.issue=2&rft.spage=E167&rft.epage=E175&rft.pages=E167-E175&rft.issn=0193-1849&rft.eissn=1522-1555&rft_id=info:doi/10.1152/ajpendo.00287.2022&rft_dat=%3Cproquest_pubme%3E2754501499%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754501499&rft_id=info:pmid/36516224&rfr_iscdi=true