Laser-Assisted Robotic Roller Forming of Ultrahigh-Strength Steel QP1180 with High Precision
Laser-assisted forming provides a perfect solution that overcomes the formability of low-ductility materials. In this study, laser-assisted robotic roller forming (LRRF) was applied to bend ultrahigh-strength steel sheet (a quenching and partitioning steel with a strength grade of 1180 MPa), and the...
Gespeichert in:
Veröffentlicht in: | Materials 2023-01, Vol.16 (3), p.1026 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 1026 |
container_title | Materials |
container_volume | 16 |
creator | Min, Junying Wang, Jincheng Lian, Junhe Liu, Yi Hou, Zeran |
description | Laser-assisted forming provides a perfect solution that overcomes the formability of low-ductility materials. In this study, laser-assisted robotic roller forming (LRRF) was applied to bend ultrahigh-strength steel sheet (a quenching and partitioning steel with a strength grade of 1180 MPa), and the effects of laser power density on the bending forces, springback, and bending radius of the final parts were investigated. The results show that LRRF is capable of reducing bending forces by 43%, and a compact profile with high precision (i.e., a springback angle smaller than 1° and a radius-to-thickness ratio of ~1.2) was finally achieved at a laser power density of 10 J/mm
. A higher forming temperature, at which a significant decrease in strength is observed, is responsible for the decrease of forming forces with a laser power density of higher than 7.5 J/mm
; another reason could be the heating-to-austenitization temperature and subsequent forming at a temperature above martensitic-transformation temperature. Forming takes place at a higher temperature with lower stresses, and unloading occurs at a relatively lower temperature with the recovery of Young's modulus; both facilitate the reduction of springback angles. In addition, the sharp bending radius is considered to be attributed to localized deformation and large plastic strains at the heating area. |
doi_str_mv | 10.3390/ma16031026 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9921020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743158905</galeid><sourcerecordid>A743158905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-4e2f1af281eaeeb8733e1da67ddae701c05bf918de008e4d30e9adbf31c575f93</originalsourceid><addsrcrecordid>eNpdkd9rFDEQx4MottS--AfIgi8ibM2v3WxehKO0tnBgtfZNCNlkspeSTWqyp_jfm-PaWk0eJpn5zDczGYReE3zCmMQfZk16zAim_TN0SKTsWyI5f_7kfICOS7nFdTFGBipfogPWC7G7HqLva10gt6tSfFnANl_TmBZvqg0BcnOe8uzj1CTX3IQl642fNu31kiFOy6a5XgBC8-WKkAE3v3z1XNR4c5XB-OJTfIVeOB0KHN_bI3Rzfvbt9KJdf_50ebpat4bzbmk5UEe0owMBDTAOgjEgVvfCWg0CE4O70UkyWMB4AG4ZBqnt6BgxneicZEfo4173bjvOYA3EWmpQd9nPOv9WSXv1byT6jZrSTyUlrT-Hq8C7e4GcfmyhLGr2xUAIOkLaFkWF6HoiCacVffsfepu2Odb2dhSXjFLZVepkT006gPLRpfquqdvC7E2K4Hz1rwRnpBsk3iW83yeYnErJ4B6rJ1jtBq3-DrrCb572-4g-jJX9AQXSot0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774932295</pqid></control><display><type>article</type><title>Laser-Assisted Robotic Roller Forming of Ultrahigh-Strength Steel QP1180 with High Precision</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Min, Junying ; Wang, Jincheng ; Lian, Junhe ; Liu, Yi ; Hou, Zeran</creator><creatorcontrib>Min, Junying ; Wang, Jincheng ; Lian, Junhe ; Liu, Yi ; Hou, Zeran</creatorcontrib><description>Laser-assisted forming provides a perfect solution that overcomes the formability of low-ductility materials. In this study, laser-assisted robotic roller forming (LRRF) was applied to bend ultrahigh-strength steel sheet (a quenching and partitioning steel with a strength grade of 1180 MPa), and the effects of laser power density on the bending forces, springback, and bending radius of the final parts were investigated. The results show that LRRF is capable of reducing bending forces by 43%, and a compact profile with high precision (i.e., a springback angle smaller than 1° and a radius-to-thickness ratio of ~1.2) was finally achieved at a laser power density of 10 J/mm
. A higher forming temperature, at which a significant decrease in strength is observed, is responsible for the decrease of forming forces with a laser power density of higher than 7.5 J/mm
; another reason could be the heating-to-austenitization temperature and subsequent forming at a temperature above martensitic-transformation temperature. Forming takes place at a higher temperature with lower stresses, and unloading occurs at a relatively lower temperature with the recovery of Young's modulus; both facilitate the reduction of springback angles. In addition, the sharp bending radius is considered to be attributed to localized deformation and large plastic strains at the heating area.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16031026</identifier><identifier>PMID: 36770033</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Alloys ; Batteries ; Bend radius ; Bend strength ; Deformation ; Ductility ; Electric vehicles ; Heating ; High strength steels ; Investigations ; Lasers ; Metal sheets ; Modulus of elasticity ; Robotics ; Springback ; Steel ; Thickness ratio ; Transformation temperature</subject><ispartof>Materials, 2023-01, Vol.16 (3), p.1026</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-4e2f1af281eaeeb8733e1da67ddae701c05bf918de008e4d30e9adbf31c575f93</citedby><cites>FETCH-LOGICAL-c445t-4e2f1af281eaeeb8733e1da67ddae701c05bf918de008e4d30e9adbf31c575f93</cites><orcidid>0000-0003-4980-7916 ; 0000-0003-0323-3486 ; 0000-0002-1754-6259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921020/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921020/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36770033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Min, Junying</creatorcontrib><creatorcontrib>Wang, Jincheng</creatorcontrib><creatorcontrib>Lian, Junhe</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Hou, Zeran</creatorcontrib><title>Laser-Assisted Robotic Roller Forming of Ultrahigh-Strength Steel QP1180 with High Precision</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Laser-assisted forming provides a perfect solution that overcomes the formability of low-ductility materials. In this study, laser-assisted robotic roller forming (LRRF) was applied to bend ultrahigh-strength steel sheet (a quenching and partitioning steel with a strength grade of 1180 MPa), and the effects of laser power density on the bending forces, springback, and bending radius of the final parts were investigated. The results show that LRRF is capable of reducing bending forces by 43%, and a compact profile with high precision (i.e., a springback angle smaller than 1° and a radius-to-thickness ratio of ~1.2) was finally achieved at a laser power density of 10 J/mm
. A higher forming temperature, at which a significant decrease in strength is observed, is responsible for the decrease of forming forces with a laser power density of higher than 7.5 J/mm
; another reason could be the heating-to-austenitization temperature and subsequent forming at a temperature above martensitic-transformation temperature. Forming takes place at a higher temperature with lower stresses, and unloading occurs at a relatively lower temperature with the recovery of Young's modulus; both facilitate the reduction of springback angles. In addition, the sharp bending radius is considered to be attributed to localized deformation and large plastic strains at the heating area.</description><subject>Accuracy</subject><subject>Alloys</subject><subject>Batteries</subject><subject>Bend radius</subject><subject>Bend strength</subject><subject>Deformation</subject><subject>Ductility</subject><subject>Electric vehicles</subject><subject>Heating</subject><subject>High strength steels</subject><subject>Investigations</subject><subject>Lasers</subject><subject>Metal sheets</subject><subject>Modulus of elasticity</subject><subject>Robotics</subject><subject>Springback</subject><subject>Steel</subject><subject>Thickness ratio</subject><subject>Transformation temperature</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd9rFDEQx4MottS--AfIgi8ibM2v3WxehKO0tnBgtfZNCNlkspeSTWqyp_jfm-PaWk0eJpn5zDczGYReE3zCmMQfZk16zAim_TN0SKTsWyI5f_7kfICOS7nFdTFGBipfogPWC7G7HqLva10gt6tSfFnANl_TmBZvqg0BcnOe8uzj1CTX3IQl642fNu31kiFOy6a5XgBC8-WKkAE3v3z1XNR4c5XB-OJTfIVeOB0KHN_bI3Rzfvbt9KJdf_50ebpat4bzbmk5UEe0owMBDTAOgjEgVvfCWg0CE4O70UkyWMB4AG4ZBqnt6BgxneicZEfo4173bjvOYA3EWmpQd9nPOv9WSXv1byT6jZrSTyUlrT-Hq8C7e4GcfmyhLGr2xUAIOkLaFkWF6HoiCacVffsfepu2Odb2dhSXjFLZVepkT006gPLRpfquqdvC7E2K4Hz1rwRnpBsk3iW83yeYnErJ4B6rJ1jtBq3-DrrCb572-4g-jJX9AQXSot0</recordid><startdate>20230123</startdate><enddate>20230123</enddate><creator>Min, Junying</creator><creator>Wang, Jincheng</creator><creator>Lian, Junhe</creator><creator>Liu, Yi</creator><creator>Hou, Zeran</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4980-7916</orcidid><orcidid>https://orcid.org/0000-0003-0323-3486</orcidid><orcidid>https://orcid.org/0000-0002-1754-6259</orcidid></search><sort><creationdate>20230123</creationdate><title>Laser-Assisted Robotic Roller Forming of Ultrahigh-Strength Steel QP1180 with High Precision</title><author>Min, Junying ; Wang, Jincheng ; Lian, Junhe ; Liu, Yi ; Hou, Zeran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-4e2f1af281eaeeb8733e1da67ddae701c05bf918de008e4d30e9adbf31c575f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Alloys</topic><topic>Batteries</topic><topic>Bend radius</topic><topic>Bend strength</topic><topic>Deformation</topic><topic>Ductility</topic><topic>Electric vehicles</topic><topic>Heating</topic><topic>High strength steels</topic><topic>Investigations</topic><topic>Lasers</topic><topic>Metal sheets</topic><topic>Modulus of elasticity</topic><topic>Robotics</topic><topic>Springback</topic><topic>Steel</topic><topic>Thickness ratio</topic><topic>Transformation temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min, Junying</creatorcontrib><creatorcontrib>Wang, Jincheng</creatorcontrib><creatorcontrib>Lian, Junhe</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Hou, Zeran</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Min, Junying</au><au>Wang, Jincheng</au><au>Lian, Junhe</au><au>Liu, Yi</au><au>Hou, Zeran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser-Assisted Robotic Roller Forming of Ultrahigh-Strength Steel QP1180 with High Precision</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-01-23</date><risdate>2023</risdate><volume>16</volume><issue>3</issue><spage>1026</spage><pages>1026-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Laser-assisted forming provides a perfect solution that overcomes the formability of low-ductility materials. In this study, laser-assisted robotic roller forming (LRRF) was applied to bend ultrahigh-strength steel sheet (a quenching and partitioning steel with a strength grade of 1180 MPa), and the effects of laser power density on the bending forces, springback, and bending radius of the final parts were investigated. The results show that LRRF is capable of reducing bending forces by 43%, and a compact profile with high precision (i.e., a springback angle smaller than 1° and a radius-to-thickness ratio of ~1.2) was finally achieved at a laser power density of 10 J/mm
. A higher forming temperature, at which a significant decrease in strength is observed, is responsible for the decrease of forming forces with a laser power density of higher than 7.5 J/mm
; another reason could be the heating-to-austenitization temperature and subsequent forming at a temperature above martensitic-transformation temperature. Forming takes place at a higher temperature with lower stresses, and unloading occurs at a relatively lower temperature with the recovery of Young's modulus; both facilitate the reduction of springback angles. In addition, the sharp bending radius is considered to be attributed to localized deformation and large plastic strains at the heating area.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36770033</pmid><doi>10.3390/ma16031026</doi><orcidid>https://orcid.org/0000-0003-4980-7916</orcidid><orcidid>https://orcid.org/0000-0003-0323-3486</orcidid><orcidid>https://orcid.org/0000-0002-1754-6259</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-01, Vol.16 (3), p.1026 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9921020 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Accuracy Alloys Batteries Bend radius Bend strength Deformation Ductility Electric vehicles Heating High strength steels Investigations Lasers Metal sheets Modulus of elasticity Robotics Springback Steel Thickness ratio Transformation temperature |
title | Laser-Assisted Robotic Roller Forming of Ultrahigh-Strength Steel QP1180 with High Precision |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T16%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser-Assisted%20Robotic%20Roller%20Forming%20of%20Ultrahigh-Strength%20Steel%20QP1180%20with%20High%20Precision&rft.jtitle=Materials&rft.au=Min,%20Junying&rft.date=2023-01-23&rft.volume=16&rft.issue=3&rft.spage=1026&rft.pages=1026-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16031026&rft_dat=%3Cgale_pubme%3EA743158905%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774932295&rft_id=info:pmid/36770033&rft_galeid=A743158905&rfr_iscdi=true |