Laser-Assisted Robotic Roller Forming of Ultrahigh-Strength Steel QP1180 with High Precision

Laser-assisted forming provides a perfect solution that overcomes the formability of low-ductility materials. In this study, laser-assisted robotic roller forming (LRRF) was applied to bend ultrahigh-strength steel sheet (a quenching and partitioning steel with a strength grade of 1180 MPa), and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-01, Vol.16 (3), p.1026
Hauptverfasser: Min, Junying, Wang, Jincheng, Lian, Junhe, Liu, Yi, Hou, Zeran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 1026
container_title Materials
container_volume 16
creator Min, Junying
Wang, Jincheng
Lian, Junhe
Liu, Yi
Hou, Zeran
description Laser-assisted forming provides a perfect solution that overcomes the formability of low-ductility materials. In this study, laser-assisted robotic roller forming (LRRF) was applied to bend ultrahigh-strength steel sheet (a quenching and partitioning steel with a strength grade of 1180 MPa), and the effects of laser power density on the bending forces, springback, and bending radius of the final parts were investigated. The results show that LRRF is capable of reducing bending forces by 43%, and a compact profile with high precision (i.e., a springback angle smaller than 1° and a radius-to-thickness ratio of ~1.2) was finally achieved at a laser power density of 10 J/mm . A higher forming temperature, at which a significant decrease in strength is observed, is responsible for the decrease of forming forces with a laser power density of higher than 7.5 J/mm ; another reason could be the heating-to-austenitization temperature and subsequent forming at a temperature above martensitic-transformation temperature. Forming takes place at a higher temperature with lower stresses, and unloading occurs at a relatively lower temperature with the recovery of Young's modulus; both facilitate the reduction of springback angles. In addition, the sharp bending radius is considered to be attributed to localized deformation and large plastic strains at the heating area.
doi_str_mv 10.3390/ma16031026
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9921020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743158905</galeid><sourcerecordid>A743158905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-4e2f1af281eaeeb8733e1da67ddae701c05bf918de008e4d30e9adbf31c575f93</originalsourceid><addsrcrecordid>eNpdkd9rFDEQx4MottS--AfIgi8ibM2v3WxehKO0tnBgtfZNCNlkspeSTWqyp_jfm-PaWk0eJpn5zDczGYReE3zCmMQfZk16zAim_TN0SKTsWyI5f_7kfICOS7nFdTFGBipfogPWC7G7HqLva10gt6tSfFnANl_TmBZvqg0BcnOe8uzj1CTX3IQl642fNu31kiFOy6a5XgBC8-WKkAE3v3z1XNR4c5XB-OJTfIVeOB0KHN_bI3Rzfvbt9KJdf_50ebpat4bzbmk5UEe0owMBDTAOgjEgVvfCWg0CE4O70UkyWMB4AG4ZBqnt6BgxneicZEfo4173bjvOYA3EWmpQd9nPOv9WSXv1byT6jZrSTyUlrT-Hq8C7e4GcfmyhLGr2xUAIOkLaFkWF6HoiCacVffsfepu2Odb2dhSXjFLZVepkT006gPLRpfquqdvC7E2K4Hz1rwRnpBsk3iW83yeYnErJ4B6rJ1jtBq3-DrrCb572-4g-jJX9AQXSot0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774932295</pqid></control><display><type>article</type><title>Laser-Assisted Robotic Roller Forming of Ultrahigh-Strength Steel QP1180 with High Precision</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Min, Junying ; Wang, Jincheng ; Lian, Junhe ; Liu, Yi ; Hou, Zeran</creator><creatorcontrib>Min, Junying ; Wang, Jincheng ; Lian, Junhe ; Liu, Yi ; Hou, Zeran</creatorcontrib><description>Laser-assisted forming provides a perfect solution that overcomes the formability of low-ductility materials. In this study, laser-assisted robotic roller forming (LRRF) was applied to bend ultrahigh-strength steel sheet (a quenching and partitioning steel with a strength grade of 1180 MPa), and the effects of laser power density on the bending forces, springback, and bending radius of the final parts were investigated. The results show that LRRF is capable of reducing bending forces by 43%, and a compact profile with high precision (i.e., a springback angle smaller than 1° and a radius-to-thickness ratio of ~1.2) was finally achieved at a laser power density of 10 J/mm . A higher forming temperature, at which a significant decrease in strength is observed, is responsible for the decrease of forming forces with a laser power density of higher than 7.5 J/mm ; another reason could be the heating-to-austenitization temperature and subsequent forming at a temperature above martensitic-transformation temperature. Forming takes place at a higher temperature with lower stresses, and unloading occurs at a relatively lower temperature with the recovery of Young's modulus; both facilitate the reduction of springback angles. In addition, the sharp bending radius is considered to be attributed to localized deformation and large plastic strains at the heating area.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16031026</identifier><identifier>PMID: 36770033</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Alloys ; Batteries ; Bend radius ; Bend strength ; Deformation ; Ductility ; Electric vehicles ; Heating ; High strength steels ; Investigations ; Lasers ; Metal sheets ; Modulus of elasticity ; Robotics ; Springback ; Steel ; Thickness ratio ; Transformation temperature</subject><ispartof>Materials, 2023-01, Vol.16 (3), p.1026</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-4e2f1af281eaeeb8733e1da67ddae701c05bf918de008e4d30e9adbf31c575f93</citedby><cites>FETCH-LOGICAL-c445t-4e2f1af281eaeeb8733e1da67ddae701c05bf918de008e4d30e9adbf31c575f93</cites><orcidid>0000-0003-4980-7916 ; 0000-0003-0323-3486 ; 0000-0002-1754-6259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921020/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921020/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36770033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Min, Junying</creatorcontrib><creatorcontrib>Wang, Jincheng</creatorcontrib><creatorcontrib>Lian, Junhe</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Hou, Zeran</creatorcontrib><title>Laser-Assisted Robotic Roller Forming of Ultrahigh-Strength Steel QP1180 with High Precision</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Laser-assisted forming provides a perfect solution that overcomes the formability of low-ductility materials. In this study, laser-assisted robotic roller forming (LRRF) was applied to bend ultrahigh-strength steel sheet (a quenching and partitioning steel with a strength grade of 1180 MPa), and the effects of laser power density on the bending forces, springback, and bending radius of the final parts were investigated. The results show that LRRF is capable of reducing bending forces by 43%, and a compact profile with high precision (i.e., a springback angle smaller than 1° and a radius-to-thickness ratio of ~1.2) was finally achieved at a laser power density of 10 J/mm . A higher forming temperature, at which a significant decrease in strength is observed, is responsible for the decrease of forming forces with a laser power density of higher than 7.5 J/mm ; another reason could be the heating-to-austenitization temperature and subsequent forming at a temperature above martensitic-transformation temperature. Forming takes place at a higher temperature with lower stresses, and unloading occurs at a relatively lower temperature with the recovery of Young's modulus; both facilitate the reduction of springback angles. In addition, the sharp bending radius is considered to be attributed to localized deformation and large plastic strains at the heating area.</description><subject>Accuracy</subject><subject>Alloys</subject><subject>Batteries</subject><subject>Bend radius</subject><subject>Bend strength</subject><subject>Deformation</subject><subject>Ductility</subject><subject>Electric vehicles</subject><subject>Heating</subject><subject>High strength steels</subject><subject>Investigations</subject><subject>Lasers</subject><subject>Metal sheets</subject><subject>Modulus of elasticity</subject><subject>Robotics</subject><subject>Springback</subject><subject>Steel</subject><subject>Thickness ratio</subject><subject>Transformation temperature</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd9rFDEQx4MottS--AfIgi8ibM2v3WxehKO0tnBgtfZNCNlkspeSTWqyp_jfm-PaWk0eJpn5zDczGYReE3zCmMQfZk16zAim_TN0SKTsWyI5f_7kfICOS7nFdTFGBipfogPWC7G7HqLva10gt6tSfFnANl_TmBZvqg0BcnOe8uzj1CTX3IQl642fNu31kiFOy6a5XgBC8-WKkAE3v3z1XNR4c5XB-OJTfIVeOB0KHN_bI3Rzfvbt9KJdf_50ebpat4bzbmk5UEe0owMBDTAOgjEgVvfCWg0CE4O70UkyWMB4AG4ZBqnt6BgxneicZEfo4173bjvOYA3EWmpQd9nPOv9WSXv1byT6jZrSTyUlrT-Hq8C7e4GcfmyhLGr2xUAIOkLaFkWF6HoiCacVffsfepu2Odb2dhSXjFLZVepkT006gPLRpfquqdvC7E2K4Hz1rwRnpBsk3iW83yeYnErJ4B6rJ1jtBq3-DrrCb572-4g-jJX9AQXSot0</recordid><startdate>20230123</startdate><enddate>20230123</enddate><creator>Min, Junying</creator><creator>Wang, Jincheng</creator><creator>Lian, Junhe</creator><creator>Liu, Yi</creator><creator>Hou, Zeran</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4980-7916</orcidid><orcidid>https://orcid.org/0000-0003-0323-3486</orcidid><orcidid>https://orcid.org/0000-0002-1754-6259</orcidid></search><sort><creationdate>20230123</creationdate><title>Laser-Assisted Robotic Roller Forming of Ultrahigh-Strength Steel QP1180 with High Precision</title><author>Min, Junying ; Wang, Jincheng ; Lian, Junhe ; Liu, Yi ; Hou, Zeran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-4e2f1af281eaeeb8733e1da67ddae701c05bf918de008e4d30e9adbf31c575f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Alloys</topic><topic>Batteries</topic><topic>Bend radius</topic><topic>Bend strength</topic><topic>Deformation</topic><topic>Ductility</topic><topic>Electric vehicles</topic><topic>Heating</topic><topic>High strength steels</topic><topic>Investigations</topic><topic>Lasers</topic><topic>Metal sheets</topic><topic>Modulus of elasticity</topic><topic>Robotics</topic><topic>Springback</topic><topic>Steel</topic><topic>Thickness ratio</topic><topic>Transformation temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min, Junying</creatorcontrib><creatorcontrib>Wang, Jincheng</creatorcontrib><creatorcontrib>Lian, Junhe</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Hou, Zeran</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Min, Junying</au><au>Wang, Jincheng</au><au>Lian, Junhe</au><au>Liu, Yi</au><au>Hou, Zeran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser-Assisted Robotic Roller Forming of Ultrahigh-Strength Steel QP1180 with High Precision</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-01-23</date><risdate>2023</risdate><volume>16</volume><issue>3</issue><spage>1026</spage><pages>1026-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Laser-assisted forming provides a perfect solution that overcomes the formability of low-ductility materials. In this study, laser-assisted robotic roller forming (LRRF) was applied to bend ultrahigh-strength steel sheet (a quenching and partitioning steel with a strength grade of 1180 MPa), and the effects of laser power density on the bending forces, springback, and bending radius of the final parts were investigated. The results show that LRRF is capable of reducing bending forces by 43%, and a compact profile with high precision (i.e., a springback angle smaller than 1° and a radius-to-thickness ratio of ~1.2) was finally achieved at a laser power density of 10 J/mm . A higher forming temperature, at which a significant decrease in strength is observed, is responsible for the decrease of forming forces with a laser power density of higher than 7.5 J/mm ; another reason could be the heating-to-austenitization temperature and subsequent forming at a temperature above martensitic-transformation temperature. Forming takes place at a higher temperature with lower stresses, and unloading occurs at a relatively lower temperature with the recovery of Young's modulus; both facilitate the reduction of springback angles. In addition, the sharp bending radius is considered to be attributed to localized deformation and large plastic strains at the heating area.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36770033</pmid><doi>10.3390/ma16031026</doi><orcidid>https://orcid.org/0000-0003-4980-7916</orcidid><orcidid>https://orcid.org/0000-0003-0323-3486</orcidid><orcidid>https://orcid.org/0000-0002-1754-6259</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-01, Vol.16 (3), p.1026
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9921020
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Accuracy
Alloys
Batteries
Bend radius
Bend strength
Deformation
Ductility
Electric vehicles
Heating
High strength steels
Investigations
Lasers
Metal sheets
Modulus of elasticity
Robotics
Springback
Steel
Thickness ratio
Transformation temperature
title Laser-Assisted Robotic Roller Forming of Ultrahigh-Strength Steel QP1180 with High Precision
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T16%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser-Assisted%20Robotic%20Roller%20Forming%20of%20Ultrahigh-Strength%20Steel%20QP1180%20with%20High%20Precision&rft.jtitle=Materials&rft.au=Min,%20Junying&rft.date=2023-01-23&rft.volume=16&rft.issue=3&rft.spage=1026&rft.pages=1026-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16031026&rft_dat=%3Cgale_pubme%3EA743158905%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774932295&rft_id=info:pmid/36770033&rft_galeid=A743158905&rfr_iscdi=true