Low Temperature In Situ Synthesis of ZnO Nanoparticles from Electric Arc Furnace Dust (EAFD) Waste to Impart Antibacterial Properties on Natural Dye-Colored Batik Fabrics

Natural polymer (cellulose)-based fabric was colored using an environmentally friendly natural dye extracted from ( ) in the preparation of Batik fabric, a cultural heritage of Indonesia that is recognized by United Nations Educational, Scientific and Cultural Organization (UNESCO). Despite the sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2023-02, Vol.15 (3), p.746
Hauptverfasser: Eskani, Istihanah Nurul, Rahayuningsih, Edia, Astuti, Widi, Pidhatika, Bidhari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Natural polymer (cellulose)-based fabric was colored using an environmentally friendly natural dye extracted from ( ) in the preparation of Batik fabric, a cultural heritage of Indonesia that is recognized by United Nations Educational, Scientific and Cultural Organization (UNESCO). Despite the significant favorable properties in terms of functions, environmental, and cultural aspects, the combination between natural polymer-based fabric and natural dyes makes the Batik fabric an ideal medium for bacterial growth, leading to lower product quality. In the quest for a sustainable, environmentally friendly, rich-in-culture, yet durable textile, this study aimed at the functionalization of natural dye (ND)-colored Batik fabric with antibacterial ZnO nanoparticles (ZnO NPs) synthesized from Electric Arc Furnace Dust (EAFD) waste. An in situ immobilization process with a Chemical Bath Deposition (CBD) method was explored at a pH range from 6 to 11 at 50 °C. Characterization methods include XRD, XRF, FESEM, EDX, FT-IR, tensile strength measurement, agar diffusion testing, and a CIE L*a*b* scale measurement. The XRD and XRF results showed that pure (>98%) ZnO NPs were formed at pH 11 of the CBD process. FESEM results demonstrated that the pure ZnO NPs either precipitated at the CBD reactor or were immobilized on the cellulose fabric, exhibiting distinct morphology compared to the non-pure ZnO NPs. EDX elemental analysis before and after washing demonstrated the durability of the ZnO NPs attachment, in which 84% of the ZnO NPs remained on the fabric after two washing cycles (equal to 10 cycles of home laundering). The FT-IR spectra provided information on the chemical functional groups, demonstrating the success of the ZnO NPs immobilization on the cellulose fabric through Van der Waals or coordination bonding. Moreover, the in situ immobilization of ZnO NPs enhanced the Batik fabric's tensile strength but reduced its elongation. ZnO NP-functionalized Batik fabric that was treated at pH 10 and pH 11 showed antibacterial activity against . The CIE L*a*b* scale results showed that the immobilization process affects the color quality of the ND-colored Batik fabric. However, based on organoleptic observations, the color of the Batik fabric that was treated at pH 11 is still acceptable for ND-colored Batik fabric.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym15030746