Effects of Micro-Shot Peening on the Fatigue Strength of Anodized 7075-T6 Alloy
Micro-shot peening under two Almen intensities was performed to increase the fatigue endurance limit of anodized AA 7075 alloy in T6 condition. Compressive residual stress (CRS) and a nano-grained structure were present in the outermost as-peened layer. Microcracks in the anodized layer obviously ab...
Gespeichert in:
Veröffentlicht in: | Materials 2023-01, Vol.16 (3), p.1160 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 1160 |
container_title | Materials |
container_volume | 16 |
creator | Su, Chih-Hang Chen, Tai-Cheng Ding, Yi-Shiun Lu, Guan-Xun Tsay, Leu-Wen |
description | Micro-shot peening under two Almen intensities was performed to increase the fatigue endurance limit of anodized AA 7075 alloy in T6 condition. Compressive residual stress (CRS) and a nano-grained structure were present in the outermost as-peened layer. Microcracks in the anodized layer obviously abbreviated the fatigue strength/life of the substrate. The endurance limit of the anodized AA 7075 was lowered to less than 200 MPa. By contrast, micro-shot peening increased the endurance limit of the anodized AA 7075 to above that of the substrate (about 300 MPa). Without anodization, the fatigue strength of the high peened (HP) specimen fluctuated; this was the result of high surface roughness of the specimen, as compared to that of the low peened (LP) one. Pickling before anodizing was found to erode the outermost peened layer, which caused a decrease in the positive effect of peening. After anodization, the HP sample had a greater fatigue strength/endurance limit than that of the LP one. The fracture appearance of an anodized fatigued sample showed an observable ring of brittle fracture. Fatigue cracks present in the brittle coating propagated directly into the substrate, significantly damaging the fatigue performance of the anodized sample. The CRS and the nano-grained structure beneath the anodized layer accounted for a noticeable increase in resistance to fatigue failure of the anodized micro-shot peened specimen. |
doi_str_mv | 10.3390/ma16031160 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9920401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743159079</galeid><sourcerecordid>A743159079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-c0972994a30c1d92d4d9364fc32e61a56e44b3b757d5308b723e51a8818951803</originalsourceid><addsrcrecordid>eNpdkV1LHTEQhkOpVFFv-gPKQm9KYTXZfO3cFA6irWBR0F6HnOzsnshuYjfZgv31zeGotc1AMiTPvMnkJeQ9oyecAz2dLFOUszK9IQcMQNUMhHj7Kt8nxynd0zI4Z20D78g-V1pTpuQBuT7ve3Q5VbGvvns3x_p2E3N1gxh8GKoYqrzB6sJmPyxY3eYZw5A3W3oVYud_Y1dpqmV9p6rVOMbHI7LX2zHh8dN6SH5cnN-dfauvrr9enq2uase1zLWjoBsAYTl1rIOmEx1wJXrHG1TMSoVCrPlaS91JTtu1bjhKZtuWtSBZS_kh-bLTfVjWE3YOQ57taB5mP9n50UTrzb8nwW_MEH8ZgIYKyorApyeBOf5cMGUz-eRwHG3AuCTTaC0VgwZ4QT_-h97HZQ6lvS0lCgF6S53sqMGOaHzoY7nXlehw8i4G7H3ZX2nBmQSqoRR83hWUX09pxv7l9Yyarbfmr7cF_vC63xf02Un-B1Qamsw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774933973</pqid></control><display><type>article</type><title>Effects of Micro-Shot Peening on the Fatigue Strength of Anodized 7075-T6 Alloy</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Su, Chih-Hang ; Chen, Tai-Cheng ; Ding, Yi-Shiun ; Lu, Guan-Xun ; Tsay, Leu-Wen</creator><creatorcontrib>Su, Chih-Hang ; Chen, Tai-Cheng ; Ding, Yi-Shiun ; Lu, Guan-Xun ; Tsay, Leu-Wen</creatorcontrib><description>Micro-shot peening under two Almen intensities was performed to increase the fatigue endurance limit of anodized AA 7075 alloy in T6 condition. Compressive residual stress (CRS) and a nano-grained structure were present in the outermost as-peened layer. Microcracks in the anodized layer obviously abbreviated the fatigue strength/life of the substrate. The endurance limit of the anodized AA 7075 was lowered to less than 200 MPa. By contrast, micro-shot peening increased the endurance limit of the anodized AA 7075 to above that of the substrate (about 300 MPa). Without anodization, the fatigue strength of the high peened (HP) specimen fluctuated; this was the result of high surface roughness of the specimen, as compared to that of the low peened (LP) one. Pickling before anodizing was found to erode the outermost peened layer, which caused a decrease in the positive effect of peening. After anodization, the HP sample had a greater fatigue strength/endurance limit than that of the LP one. The fracture appearance of an anodized fatigued sample showed an observable ring of brittle fracture. Fatigue cracks present in the brittle coating propagated directly into the substrate, significantly damaging the fatigue performance of the anodized sample. The CRS and the nano-grained structure beneath the anodized layer accounted for a noticeable increase in resistance to fatigue failure of the anodized micro-shot peened specimen.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16031160</identifier><identifier>PMID: 36770165</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloys ; Aluminum base alloys ; Anodizing ; Compressive properties ; Crack propagation ; Electrolytes ; Fatigue ; Fatigue cracks ; Fatigue failure ; Fatigue limit ; Fatigue strength ; Fatigue testing machines ; Fractures ; Materials ; Metal fatigue ; Microcracks ; Morphology ; Pickling ; Residual stress ; Shot peening ; Specialty metals industry ; Strain hardening ; Stress measurement ; Substrates ; Sulfur ; Surface roughness</subject><ispartof>Materials, 2023-01, Vol.16 (3), p.1160</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-c0972994a30c1d92d4d9364fc32e61a56e44b3b757d5308b723e51a8818951803</citedby><cites>FETCH-LOGICAL-c375t-c0972994a30c1d92d4d9364fc32e61a56e44b3b757d5308b723e51a8818951803</cites><orcidid>0000-0003-1644-9745 ; 0000-0002-9549-2823</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920401/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920401/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36770165$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Chih-Hang</creatorcontrib><creatorcontrib>Chen, Tai-Cheng</creatorcontrib><creatorcontrib>Ding, Yi-Shiun</creatorcontrib><creatorcontrib>Lu, Guan-Xun</creatorcontrib><creatorcontrib>Tsay, Leu-Wen</creatorcontrib><title>Effects of Micro-Shot Peening on the Fatigue Strength of Anodized 7075-T6 Alloy</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Micro-shot peening under two Almen intensities was performed to increase the fatigue endurance limit of anodized AA 7075 alloy in T6 condition. Compressive residual stress (CRS) and a nano-grained structure were present in the outermost as-peened layer. Microcracks in the anodized layer obviously abbreviated the fatigue strength/life of the substrate. The endurance limit of the anodized AA 7075 was lowered to less than 200 MPa. By contrast, micro-shot peening increased the endurance limit of the anodized AA 7075 to above that of the substrate (about 300 MPa). Without anodization, the fatigue strength of the high peened (HP) specimen fluctuated; this was the result of high surface roughness of the specimen, as compared to that of the low peened (LP) one. Pickling before anodizing was found to erode the outermost peened layer, which caused a decrease in the positive effect of peening. After anodization, the HP sample had a greater fatigue strength/endurance limit than that of the LP one. The fracture appearance of an anodized fatigued sample showed an observable ring of brittle fracture. Fatigue cracks present in the brittle coating propagated directly into the substrate, significantly damaging the fatigue performance of the anodized sample. The CRS and the nano-grained structure beneath the anodized layer accounted for a noticeable increase in resistance to fatigue failure of the anodized micro-shot peened specimen.</description><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Anodizing</subject><subject>Compressive properties</subject><subject>Crack propagation</subject><subject>Electrolytes</subject><subject>Fatigue</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue limit</subject><subject>Fatigue strength</subject><subject>Fatigue testing machines</subject><subject>Fractures</subject><subject>Materials</subject><subject>Metal fatigue</subject><subject>Microcracks</subject><subject>Morphology</subject><subject>Pickling</subject><subject>Residual stress</subject><subject>Shot peening</subject><subject>Specialty metals industry</subject><subject>Strain hardening</subject><subject>Stress measurement</subject><subject>Substrates</subject><subject>Sulfur</subject><subject>Surface roughness</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV1LHTEQhkOpVFFv-gPKQm9KYTXZfO3cFA6irWBR0F6HnOzsnshuYjfZgv31zeGotc1AMiTPvMnkJeQ9oyecAz2dLFOUszK9IQcMQNUMhHj7Kt8nxynd0zI4Z20D78g-V1pTpuQBuT7ve3Q5VbGvvns3x_p2E3N1gxh8GKoYqrzB6sJmPyxY3eYZw5A3W3oVYud_Y1dpqmV9p6rVOMbHI7LX2zHh8dN6SH5cnN-dfauvrr9enq2uase1zLWjoBsAYTl1rIOmEx1wJXrHG1TMSoVCrPlaS91JTtu1bjhKZtuWtSBZS_kh-bLTfVjWE3YOQ57taB5mP9n50UTrzb8nwW_MEH8ZgIYKyorApyeBOf5cMGUz-eRwHG3AuCTTaC0VgwZ4QT_-h97HZQ6lvS0lCgF6S53sqMGOaHzoY7nXlehw8i4G7H3ZX2nBmQSqoRR83hWUX09pxv7l9Yyarbfmr7cF_vC63xf02Un-B1Qamsw</recordid><startdate>20230129</startdate><enddate>20230129</enddate><creator>Su, Chih-Hang</creator><creator>Chen, Tai-Cheng</creator><creator>Ding, Yi-Shiun</creator><creator>Lu, Guan-Xun</creator><creator>Tsay, Leu-Wen</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1644-9745</orcidid><orcidid>https://orcid.org/0000-0002-9549-2823</orcidid></search><sort><creationdate>20230129</creationdate><title>Effects of Micro-Shot Peening on the Fatigue Strength of Anodized 7075-T6 Alloy</title><author>Su, Chih-Hang ; Chen, Tai-Cheng ; Ding, Yi-Shiun ; Lu, Guan-Xun ; Tsay, Leu-Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-c0972994a30c1d92d4d9364fc32e61a56e44b3b757d5308b723e51a8818951803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Anodizing</topic><topic>Compressive properties</topic><topic>Crack propagation</topic><topic>Electrolytes</topic><topic>Fatigue</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue limit</topic><topic>Fatigue strength</topic><topic>Fatigue testing machines</topic><topic>Fractures</topic><topic>Materials</topic><topic>Metal fatigue</topic><topic>Microcracks</topic><topic>Morphology</topic><topic>Pickling</topic><topic>Residual stress</topic><topic>Shot peening</topic><topic>Specialty metals industry</topic><topic>Strain hardening</topic><topic>Stress measurement</topic><topic>Substrates</topic><topic>Sulfur</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Chih-Hang</creatorcontrib><creatorcontrib>Chen, Tai-Cheng</creatorcontrib><creatorcontrib>Ding, Yi-Shiun</creatorcontrib><creatorcontrib>Lu, Guan-Xun</creatorcontrib><creatorcontrib>Tsay, Leu-Wen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Chih-Hang</au><au>Chen, Tai-Cheng</au><au>Ding, Yi-Shiun</au><au>Lu, Guan-Xun</au><au>Tsay, Leu-Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Micro-Shot Peening on the Fatigue Strength of Anodized 7075-T6 Alloy</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-01-29</date><risdate>2023</risdate><volume>16</volume><issue>3</issue><spage>1160</spage><pages>1160-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Micro-shot peening under two Almen intensities was performed to increase the fatigue endurance limit of anodized AA 7075 alloy in T6 condition. Compressive residual stress (CRS) and a nano-grained structure were present in the outermost as-peened layer. Microcracks in the anodized layer obviously abbreviated the fatigue strength/life of the substrate. The endurance limit of the anodized AA 7075 was lowered to less than 200 MPa. By contrast, micro-shot peening increased the endurance limit of the anodized AA 7075 to above that of the substrate (about 300 MPa). Without anodization, the fatigue strength of the high peened (HP) specimen fluctuated; this was the result of high surface roughness of the specimen, as compared to that of the low peened (LP) one. Pickling before anodizing was found to erode the outermost peened layer, which caused a decrease in the positive effect of peening. After anodization, the HP sample had a greater fatigue strength/endurance limit than that of the LP one. The fracture appearance of an anodized fatigued sample showed an observable ring of brittle fracture. Fatigue cracks present in the brittle coating propagated directly into the substrate, significantly damaging the fatigue performance of the anodized sample. The CRS and the nano-grained structure beneath the anodized layer accounted for a noticeable increase in resistance to fatigue failure of the anodized micro-shot peened specimen.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36770165</pmid><doi>10.3390/ma16031160</doi><orcidid>https://orcid.org/0000-0003-1644-9745</orcidid><orcidid>https://orcid.org/0000-0002-9549-2823</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-01, Vol.16 (3), p.1160 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9920401 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Alloys Aluminum base alloys Anodizing Compressive properties Crack propagation Electrolytes Fatigue Fatigue cracks Fatigue failure Fatigue limit Fatigue strength Fatigue testing machines Fractures Materials Metal fatigue Microcracks Morphology Pickling Residual stress Shot peening Specialty metals industry Strain hardening Stress measurement Substrates Sulfur Surface roughness |
title | Effects of Micro-Shot Peening on the Fatigue Strength of Anodized 7075-T6 Alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A15%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Micro-Shot%20Peening%20on%20the%20Fatigue%20Strength%20of%20Anodized%207075-T6%20Alloy&rft.jtitle=Materials&rft.au=Su,%20Chih-Hang&rft.date=2023-01-29&rft.volume=16&rft.issue=3&rft.spage=1160&rft.pages=1160-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16031160&rft_dat=%3Cgale_pubme%3EA743159079%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774933973&rft_id=info:pmid/36770165&rft_galeid=A743159079&rfr_iscdi=true |