Process Parameter Selection for Production of Stainless Steel 316L Using Efficient Multi-Objective Bayesian Optimization Algorithm

Additive manufacturing is a modern technique to produce parts with a complex geometry. However, the choice of the printing parameters is a time-consuming and costly process. In this study, the parameter optimization for the laser powder bed fusion process was investigated. Using state-of-the art mul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2023-01, Vol.16 (3), p.1050
Hauptverfasser: Chepiga, Timur, Zhilyaev, Petr, Ryabov, Alexander, Simonov, Alexey P, Dubinin, Oleg N, Firsov, Denis G, Kuzminova, Yulia O, Evlashin, Stanislav A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 1050
container_title Materials
container_volume 16
creator Chepiga, Timur
Zhilyaev, Petr
Ryabov, Alexander
Simonov, Alexey P
Dubinin, Oleg N
Firsov, Denis G
Kuzminova, Yulia O
Evlashin, Stanislav A
description Additive manufacturing is a modern technique to produce parts with a complex geometry. However, the choice of the printing parameters is a time-consuming and costly process. In this study, the parameter optimization for the laser powder bed fusion process was investigated. Using state-of-the art multi-objective Bayesian optimization, the set of the most-promising process parameters (laser power, scanning speed, hatch distance, etc.), which would yield parts with the desired hardness and porosity, was established. The Gaussian process surrogate model was built on 57 empirical data points, and through efficient sampling in the design space, we were able to obtain three points in the Pareto front in just over six iterations. The produced parts had a hardness ranging from 224-235 HV and a porosity in the range of 0.2-0.37%. The trained model recommended using the following parameters for high-quality parts: 58 W, 257 mm/s, 45 µm, with a scan rotation angle of 131 degrees. The proposed methodology greatly reduces the number of experiments, thus saving time and resources. The candidate process parameters prescribed by the model were experimentally validated and tested.
doi_str_mv 10.3390/ma16031050
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9919176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743158969</galeid><sourcerecordid>A743158969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-b07e6057daf1eff40b9815b4109f0a22adb248a65230143f04ad942aab6bfdf33</originalsourceid><addsrcrecordid>eNpdkk1vEzEQhlcIRKvSCz8AWeKCkFLstdcbX5BCVQpSUCqFnq3Z3XHqyGsH21upHPnlOE0pBfvgj3nm9TvyVNVrRs84V_TDCExSzmhDn1XHTCk5Y0qI50_2R9VpSltaBudsXquX1RGXbUtp0x5Xv65i6DElcgURRswYyRod9tkGT0yIpMSH6XAMhqwzWO_2_DojOsKZXJLrZP2GXBhje4s-k2-Ty3a26rZ7mVskn-AOkwVPVrtsR_sT7tUWbhOizTfjq-qFAZfw9GE9qa4_X3w__zJbri6_ni-Ws563TZ51tEVZPA9gGBojaKfmrOkEo8pQqGsYulrMQTY1p0xwQwUMStQAnezMYDg_qT4edHdTN-LQF6sRnN5FO0K80wGs_jfi7Y3ehFutFFOslUXg3YNADD8mTFmPNvXoHHgMU9J12zaSKd7Qgr79D92GKfpS3p4SiteFK9TZgdqAQ229CeXdvswBR9sHj8aW-0UrOGvmSqqS8P6Q0MeQUkTz6J5RvW8H_bcdCvzmab2P6J_P578BhdOxSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774932193</pqid></control><display><type>article</type><title>Process Parameter Selection for Production of Stainless Steel 316L Using Efficient Multi-Objective Bayesian Optimization Algorithm</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Chepiga, Timur ; Zhilyaev, Petr ; Ryabov, Alexander ; Simonov, Alexey P ; Dubinin, Oleg N ; Firsov, Denis G ; Kuzminova, Yulia O ; Evlashin, Stanislav A</creator><creatorcontrib>Chepiga, Timur ; Zhilyaev, Petr ; Ryabov, Alexander ; Simonov, Alexey P ; Dubinin, Oleg N ; Firsov, Denis G ; Kuzminova, Yulia O ; Evlashin, Stanislav A</creatorcontrib><description>Additive manufacturing is a modern technique to produce parts with a complex geometry. However, the choice of the printing parameters is a time-consuming and costly process. In this study, the parameter optimization for the laser powder bed fusion process was investigated. Using state-of-the art multi-objective Bayesian optimization, the set of the most-promising process parameters (laser power, scanning speed, hatch distance, etc.), which would yield parts with the desired hardness and porosity, was established. The Gaussian process surrogate model was built on 57 empirical data points, and through efficient sampling in the design space, we were able to obtain three points in the Pareto front in just over six iterations. The produced parts had a hardness ranging from 224-235 HV and a porosity in the range of 0.2-0.37%. The trained model recommended using the following parameters for high-quality parts: 58 W, 257 mm/s, 45 µm, with a scan rotation angle of 131 degrees. The proposed methodology greatly reduces the number of experiments, thus saving time and resources. The candidate process parameters prescribed by the model were experimentally validated and tested.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16031050</identifier><identifier>PMID: 36770057</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3D printing ; Algorithms ; Bayesian analysis ; Data points ; Gaussian process ; Hardness ; Lasers ; Mathematical models ; Mathematical optimization ; Mechanical properties ; Methods ; Multiple objective analysis ; Optimization ; Porosity ; Powder beds ; Powders ; Process parameters ; Production data ; Stainless steel ; Stainless steels ; Steel, Stainless</subject><ispartof>Materials, 2023-01, Vol.16 (3), p.1050</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-b07e6057daf1eff40b9815b4109f0a22adb248a65230143f04ad942aab6bfdf33</citedby><cites>FETCH-LOGICAL-c375t-b07e6057daf1eff40b9815b4109f0a22adb248a65230143f04ad942aab6bfdf33</cites><orcidid>0000-0001-9216-7163 ; 0000-0002-0640-9494 ; 0000-0001-6849-7808 ; 0000-0001-6953-8317 ; 0000-0001-6565-3748 ; 0000-0002-7333-3346 ; 0000-0002-8733-5692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919176/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919176/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36770057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chepiga, Timur</creatorcontrib><creatorcontrib>Zhilyaev, Petr</creatorcontrib><creatorcontrib>Ryabov, Alexander</creatorcontrib><creatorcontrib>Simonov, Alexey P</creatorcontrib><creatorcontrib>Dubinin, Oleg N</creatorcontrib><creatorcontrib>Firsov, Denis G</creatorcontrib><creatorcontrib>Kuzminova, Yulia O</creatorcontrib><creatorcontrib>Evlashin, Stanislav A</creatorcontrib><title>Process Parameter Selection for Production of Stainless Steel 316L Using Efficient Multi-Objective Bayesian Optimization Algorithm</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Additive manufacturing is a modern technique to produce parts with a complex geometry. However, the choice of the printing parameters is a time-consuming and costly process. In this study, the parameter optimization for the laser powder bed fusion process was investigated. Using state-of-the art multi-objective Bayesian optimization, the set of the most-promising process parameters (laser power, scanning speed, hatch distance, etc.), which would yield parts with the desired hardness and porosity, was established. The Gaussian process surrogate model was built on 57 empirical data points, and through efficient sampling in the design space, we were able to obtain three points in the Pareto front in just over six iterations. The produced parts had a hardness ranging from 224-235 HV and a porosity in the range of 0.2-0.37%. The trained model recommended using the following parameters for high-quality parts: 58 W, 257 mm/s, 45 µm, with a scan rotation angle of 131 degrees. The proposed methodology greatly reduces the number of experiments, thus saving time and resources. The candidate process parameters prescribed by the model were experimentally validated and tested.</description><subject>3D printing</subject><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Data points</subject><subject>Gaussian process</subject><subject>Hardness</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Porosity</subject><subject>Powder beds</subject><subject>Powders</subject><subject>Process parameters</subject><subject>Production data</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Steel, Stainless</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkk1vEzEQhlcIRKvSCz8AWeKCkFLstdcbX5BCVQpSUCqFnq3Z3XHqyGsH21upHPnlOE0pBfvgj3nm9TvyVNVrRs84V_TDCExSzmhDn1XHTCk5Y0qI50_2R9VpSltaBudsXquX1RGXbUtp0x5Xv65i6DElcgURRswYyRod9tkGT0yIpMSH6XAMhqwzWO_2_DojOsKZXJLrZP2GXBhje4s-k2-Ty3a26rZ7mVskn-AOkwVPVrtsR_sT7tUWbhOizTfjq-qFAZfw9GE9qa4_X3w__zJbri6_ni-Ws563TZ51tEVZPA9gGBojaKfmrOkEo8pQqGsYulrMQTY1p0xwQwUMStQAnezMYDg_qT4edHdTN-LQF6sRnN5FO0K80wGs_jfi7Y3ehFutFFOslUXg3YNADD8mTFmPNvXoHHgMU9J12zaSKd7Qgr79D92GKfpS3p4SiteFK9TZgdqAQ229CeXdvswBR9sHj8aW-0UrOGvmSqqS8P6Q0MeQUkTz6J5RvW8H_bcdCvzmab2P6J_P578BhdOxSQ</recordid><startdate>20230125</startdate><enddate>20230125</enddate><creator>Chepiga, Timur</creator><creator>Zhilyaev, Petr</creator><creator>Ryabov, Alexander</creator><creator>Simonov, Alexey P</creator><creator>Dubinin, Oleg N</creator><creator>Firsov, Denis G</creator><creator>Kuzminova, Yulia O</creator><creator>Evlashin, Stanislav A</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9216-7163</orcidid><orcidid>https://orcid.org/0000-0002-0640-9494</orcidid><orcidid>https://orcid.org/0000-0001-6849-7808</orcidid><orcidid>https://orcid.org/0000-0001-6953-8317</orcidid><orcidid>https://orcid.org/0000-0001-6565-3748</orcidid><orcidid>https://orcid.org/0000-0002-7333-3346</orcidid><orcidid>https://orcid.org/0000-0002-8733-5692</orcidid></search><sort><creationdate>20230125</creationdate><title>Process Parameter Selection for Production of Stainless Steel 316L Using Efficient Multi-Objective Bayesian Optimization Algorithm</title><author>Chepiga, Timur ; Zhilyaev, Petr ; Ryabov, Alexander ; Simonov, Alexey P ; Dubinin, Oleg N ; Firsov, Denis G ; Kuzminova, Yulia O ; Evlashin, Stanislav A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-b07e6057daf1eff40b9815b4109f0a22adb248a65230143f04ad942aab6bfdf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D printing</topic><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Data points</topic><topic>Gaussian process</topic><topic>Hardness</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Porosity</topic><topic>Powder beds</topic><topic>Powders</topic><topic>Process parameters</topic><topic>Production data</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Steel, Stainless</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chepiga, Timur</creatorcontrib><creatorcontrib>Zhilyaev, Petr</creatorcontrib><creatorcontrib>Ryabov, Alexander</creatorcontrib><creatorcontrib>Simonov, Alexey P</creatorcontrib><creatorcontrib>Dubinin, Oleg N</creatorcontrib><creatorcontrib>Firsov, Denis G</creatorcontrib><creatorcontrib>Kuzminova, Yulia O</creatorcontrib><creatorcontrib>Evlashin, Stanislav A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chepiga, Timur</au><au>Zhilyaev, Petr</au><au>Ryabov, Alexander</au><au>Simonov, Alexey P</au><au>Dubinin, Oleg N</au><au>Firsov, Denis G</au><au>Kuzminova, Yulia O</au><au>Evlashin, Stanislav A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process Parameter Selection for Production of Stainless Steel 316L Using Efficient Multi-Objective Bayesian Optimization Algorithm</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2023-01-25</date><risdate>2023</risdate><volume>16</volume><issue>3</issue><spage>1050</spage><pages>1050-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Additive manufacturing is a modern technique to produce parts with a complex geometry. However, the choice of the printing parameters is a time-consuming and costly process. In this study, the parameter optimization for the laser powder bed fusion process was investigated. Using state-of-the art multi-objective Bayesian optimization, the set of the most-promising process parameters (laser power, scanning speed, hatch distance, etc.), which would yield parts with the desired hardness and porosity, was established. The Gaussian process surrogate model was built on 57 empirical data points, and through efficient sampling in the design space, we were able to obtain three points in the Pareto front in just over six iterations. The produced parts had a hardness ranging from 224-235 HV and a porosity in the range of 0.2-0.37%. The trained model recommended using the following parameters for high-quality parts: 58 W, 257 mm/s, 45 µm, with a scan rotation angle of 131 degrees. The proposed methodology greatly reduces the number of experiments, thus saving time and resources. The candidate process parameters prescribed by the model were experimentally validated and tested.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36770057</pmid><doi>10.3390/ma16031050</doi><orcidid>https://orcid.org/0000-0001-9216-7163</orcidid><orcidid>https://orcid.org/0000-0002-0640-9494</orcidid><orcidid>https://orcid.org/0000-0001-6849-7808</orcidid><orcidid>https://orcid.org/0000-0001-6953-8317</orcidid><orcidid>https://orcid.org/0000-0001-6565-3748</orcidid><orcidid>https://orcid.org/0000-0002-7333-3346</orcidid><orcidid>https://orcid.org/0000-0002-8733-5692</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2023-01, Vol.16 (3), p.1050
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9919176
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects 3D printing
Algorithms
Bayesian analysis
Data points
Gaussian process
Hardness
Lasers
Mathematical models
Mathematical optimization
Mechanical properties
Methods
Multiple objective analysis
Optimization
Porosity
Powder beds
Powders
Process parameters
Production data
Stainless steel
Stainless steels
Steel, Stainless
title Process Parameter Selection for Production of Stainless Steel 316L Using Efficient Multi-Objective Bayesian Optimization Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20Parameter%20Selection%20for%20Production%20of%20Stainless%20Steel%20316L%20Using%20Efficient%20Multi-Objective%20Bayesian%20Optimization%20Algorithm&rft.jtitle=Materials&rft.au=Chepiga,%20Timur&rft.date=2023-01-25&rft.volume=16&rft.issue=3&rft.spage=1050&rft.pages=1050-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16031050&rft_dat=%3Cgale_pubme%3EA743158969%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774932193&rft_id=info:pmid/36770057&rft_galeid=A743158969&rfr_iscdi=true