Towards Environment Friendly Hydrothermally Synthesized Li+, Rb+, In3+ Intercalated Phosphotungstate (PW12O40) Thin Films
In the present investigation, a one-step hydrothermal approach is proposed to synthesize Li+, Rb+, and In3+intercalated PW12O40 (PTA) thin films. The photoelectrochemical performance of the deposited Li3PW12O40 (Li−PTA), Rb3PW12O40 (Rb−PTA), and In3PW12O40 (In−PTA) photocathodes were investigated us...
Gespeichert in:
Veröffentlicht in: | Materials 2023-01, Vol.16 (3), p.888 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 888 |
container_title | Materials |
container_volume | 16 |
creator | Nadaf, Sameer N. Patil, Satish S. Kalantre, Vilasrao A. Mali, Sawanta S. Patil, Jyoti V. Hong, Chang Kook Patil, Sharadchandra S. Bhosale, Popatrao N. Mane, Sambhaji R. |
description | In the present investigation, a one-step hydrothermal approach is proposed to synthesize Li+, Rb+, and In3+intercalated PW12O40 (PTA) thin films. The photoelectrochemical performance of the deposited Li3PW12O40 (Li−PTA), Rb3PW12O40 (Rb−PTA), and In3PW12O40 (In−PTA) photocathodes were investigated using a two-electrode cell configuration of FTO/Li3PW12O40/(0.1 M I−/I3−)aq./Graphite. The energy band gaps of 2.24, 2.11, and 2.13 eV were observed for the Li−PTA, Rb−PTA, and In−PTA films, respectively, as a function of Li+, Rb+, and In3+. The evolution of the spinal cubic crystal structure with increased crystallite size was observed for Rb+ intercalation within the PTA Keggin structure, which was confirmed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) revealed a modification in the surface morphology from a rod-like structure to a densely packed, uniform, and interconnected microsphere to small and large-sized microspheres for Li−PTA, Rb−PTA, and In−PTA, respectively. Compositional studies confirmed that the composing elements of Li, Rb, In, P, W, and O ions are well in accordance with their arrangement for Li+, Rb+, In3+, P5+, W6+, and O2− valence states. Furthermore, the J-V performance of the deposited photocathode shows power conversion efficiencies (PCE) of 1.25%, 3.03%, and 1.62%, as a function of the incorporation of Li+, Rb+, and In3+ ions. This work offers a one-step hydrothermal approach that is a prominent way to develop Li+, Rb+, and In3+ ions intercalated PTA, i.e., Li3PW12O40, Rb3PW12O40, and In3PW12O40 photocathodes for competent solar energy harvesting. |
doi_str_mv | 10.3390/ma16030888 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9917870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774930052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-381448f8a75842d634b4c74b84a462efeef4c73f4a7d8e68942f4ba23f79e0b13</originalsourceid><addsrcrecordid>eNpdkdtKxDAQhoMoKro3PkHBG0-rOW2T3Agiri4suOiKlyFtUxtpkzVpV-rTG9nFUy4m8898_MwwABwgeE6IgBeNQikkkHO-AXaREOkQCUo3f-U7YBDCK4yPEMSx2AY7JGWp4GK0C_q5e1e-CMmNXRrvbKNtm4y90bao--SuL7xrK-0bVUf52NsogvnQRTI1p2fJQxbDxJLTGFrtc1WrNvZmlQuLyrWdfQltrCRHs2eE7yk8TuaVscnY1E3YB1ulqoMerP898DS-mV_fDaf3t5Prq-kwxwy3Q8IRpbzkio04xUVKaEZzRjNOFU2xLrUuoyYlVazgOuWC4pJmCpOSCQ0zRPbA5cp30WWNLvK4oFe1XHjTKN9Lp4z827Gmki9uKYVAjDMYDY7WBt69dTq0sjEh13WtrHZdkJixUYoEhKOIHv5DX13nbVzvi6KCRAhH6mRF5d6F4HX5PQyC8uuo8ueo5BODSpJi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774930052</pqid></control><display><type>article</type><title>Towards Environment Friendly Hydrothermally Synthesized Li+, Rb+, In3+ Intercalated Phosphotungstate (PW12O40) Thin Films</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Nadaf, Sameer N. ; Patil, Satish S. ; Kalantre, Vilasrao A. ; Mali, Sawanta S. ; Patil, Jyoti V. ; Hong, Chang Kook ; Patil, Sharadchandra S. ; Bhosale, Popatrao N. ; Mane, Sambhaji R.</creator><creatorcontrib>Nadaf, Sameer N. ; Patil, Satish S. ; Kalantre, Vilasrao A. ; Mali, Sawanta S. ; Patil, Jyoti V. ; Hong, Chang Kook ; Patil, Sharadchandra S. ; Bhosale, Popatrao N. ; Mane, Sambhaji R.</creatorcontrib><description>In the present investigation, a one-step hydrothermal approach is proposed to synthesize Li+, Rb+, and In3+intercalated PW12O40 (PTA) thin films. The photoelectrochemical performance of the deposited Li3PW12O40 (Li−PTA), Rb3PW12O40 (Rb−PTA), and In3PW12O40 (In−PTA) photocathodes were investigated using a two-electrode cell configuration of FTO/Li3PW12O40/(0.1 M I−/I3−)aq./Graphite. The energy band gaps of 2.24, 2.11, and 2.13 eV were observed for the Li−PTA, Rb−PTA, and In−PTA films, respectively, as a function of Li+, Rb+, and In3+. The evolution of the spinal cubic crystal structure with increased crystallite size was observed for Rb+ intercalation within the PTA Keggin structure, which was confirmed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) revealed a modification in the surface morphology from a rod-like structure to a densely packed, uniform, and interconnected microsphere to small and large-sized microspheres for Li−PTA, Rb−PTA, and In−PTA, respectively. Compositional studies confirmed that the composing elements of Li, Rb, In, P, W, and O ions are well in accordance with their arrangement for Li+, Rb+, In3+, P5+, W6+, and O2− valence states. Furthermore, the J-V performance of the deposited photocathode shows power conversion efficiencies (PCE) of 1.25%, 3.03%, and 1.62%, as a function of the incorporation of Li+, Rb+, and In3+ ions. This work offers a one-step hydrothermal approach that is a prominent way to develop Li+, Rb+, and In3+ ions intercalated PTA, i.e., Li3PW12O40, Rb3PW12O40, and In3PW12O40 photocathodes for competent solar energy harvesting.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma16030888</identifier><identifier>PMID: 36769895</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acids ; Alternative energy sources ; Crystal structure ; Crystallites ; Efficiency ; Energy bands ; Energy conversion efficiency ; Energy gap ; Energy harvesting ; Energy resources ; Indium ; Investigations ; Lithium ; Microspheres ; Morphology ; Photocathodes ; Photovoltaic cells ; Renewable resources ; Rubidium ; Solar energy ; Spectrum analysis ; Synthesis ; Thin films ; Valence</subject><ispartof>Materials, 2023-01, Vol.16 (3), p.888</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c272t-381448f8a75842d634b4c74b84a462efeef4c73f4a7d8e68942f4ba23f79e0b13</cites><orcidid>0000-0003-0979-6730 ; 0000-0002-4973-4203 ; 0000-0003-1959-4024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917870/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917870/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Nadaf, Sameer N.</creatorcontrib><creatorcontrib>Patil, Satish S.</creatorcontrib><creatorcontrib>Kalantre, Vilasrao A.</creatorcontrib><creatorcontrib>Mali, Sawanta S.</creatorcontrib><creatorcontrib>Patil, Jyoti V.</creatorcontrib><creatorcontrib>Hong, Chang Kook</creatorcontrib><creatorcontrib>Patil, Sharadchandra S.</creatorcontrib><creatorcontrib>Bhosale, Popatrao N.</creatorcontrib><creatorcontrib>Mane, Sambhaji R.</creatorcontrib><title>Towards Environment Friendly Hydrothermally Synthesized Li+, Rb+, In3+ Intercalated Phosphotungstate (PW12O40) Thin Films</title><title>Materials</title><description>In the present investigation, a one-step hydrothermal approach is proposed to synthesize Li+, Rb+, and In3+intercalated PW12O40 (PTA) thin films. The photoelectrochemical performance of the deposited Li3PW12O40 (Li−PTA), Rb3PW12O40 (Rb−PTA), and In3PW12O40 (In−PTA) photocathodes were investigated using a two-electrode cell configuration of FTO/Li3PW12O40/(0.1 M I−/I3−)aq./Graphite. The energy band gaps of 2.24, 2.11, and 2.13 eV were observed for the Li−PTA, Rb−PTA, and In−PTA films, respectively, as a function of Li+, Rb+, and In3+. The evolution of the spinal cubic crystal structure with increased crystallite size was observed for Rb+ intercalation within the PTA Keggin structure, which was confirmed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) revealed a modification in the surface morphology from a rod-like structure to a densely packed, uniform, and interconnected microsphere to small and large-sized microspheres for Li−PTA, Rb−PTA, and In−PTA, respectively. Compositional studies confirmed that the composing elements of Li, Rb, In, P, W, and O ions are well in accordance with their arrangement for Li+, Rb+, In3+, P5+, W6+, and O2− valence states. Furthermore, the J-V performance of the deposited photocathode shows power conversion efficiencies (PCE) of 1.25%, 3.03%, and 1.62%, as a function of the incorporation of Li+, Rb+, and In3+ ions. This work offers a one-step hydrothermal approach that is a prominent way to develop Li+, Rb+, and In3+ ions intercalated PTA, i.e., Li3PW12O40, Rb3PW12O40, and In3PW12O40 photocathodes for competent solar energy harvesting.</description><subject>Acids</subject><subject>Alternative energy sources</subject><subject>Crystal structure</subject><subject>Crystallites</subject><subject>Efficiency</subject><subject>Energy bands</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>Energy harvesting</subject><subject>Energy resources</subject><subject>Indium</subject><subject>Investigations</subject><subject>Lithium</subject><subject>Microspheres</subject><subject>Morphology</subject><subject>Photocathodes</subject><subject>Photovoltaic cells</subject><subject>Renewable resources</subject><subject>Rubidium</subject><subject>Solar energy</subject><subject>Spectrum analysis</subject><subject>Synthesis</subject><subject>Thin films</subject><subject>Valence</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkdtKxDAQhoMoKro3PkHBG0-rOW2T3Agiri4suOiKlyFtUxtpkzVpV-rTG9nFUy4m8898_MwwABwgeE6IgBeNQikkkHO-AXaREOkQCUo3f-U7YBDCK4yPEMSx2AY7JGWp4GK0C_q5e1e-CMmNXRrvbKNtm4y90bao--SuL7xrK-0bVUf52NsogvnQRTI1p2fJQxbDxJLTGFrtc1WrNvZmlQuLyrWdfQltrCRHs2eE7yk8TuaVscnY1E3YB1ulqoMerP898DS-mV_fDaf3t5Prq-kwxwy3Q8IRpbzkio04xUVKaEZzRjNOFU2xLrUuoyYlVazgOuWC4pJmCpOSCQ0zRPbA5cp30WWNLvK4oFe1XHjTKN9Lp4z827Gmki9uKYVAjDMYDY7WBt69dTq0sjEh13WtrHZdkJixUYoEhKOIHv5DX13nbVzvi6KCRAhH6mRF5d6F4HX5PQyC8uuo8ueo5BODSpJi</recordid><startdate>20230117</startdate><enddate>20230117</enddate><creator>Nadaf, Sameer N.</creator><creator>Patil, Satish S.</creator><creator>Kalantre, Vilasrao A.</creator><creator>Mali, Sawanta S.</creator><creator>Patil, Jyoti V.</creator><creator>Hong, Chang Kook</creator><creator>Patil, Sharadchandra S.</creator><creator>Bhosale, Popatrao N.</creator><creator>Mane, Sambhaji R.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0979-6730</orcidid><orcidid>https://orcid.org/0000-0002-4973-4203</orcidid><orcidid>https://orcid.org/0000-0003-1959-4024</orcidid></search><sort><creationdate>20230117</creationdate><title>Towards Environment Friendly Hydrothermally Synthesized Li+, Rb+, In3+ Intercalated Phosphotungstate (PW12O40) Thin Films</title><author>Nadaf, Sameer N. ; Patil, Satish S. ; Kalantre, Vilasrao A. ; Mali, Sawanta S. ; Patil, Jyoti V. ; Hong, Chang Kook ; Patil, Sharadchandra S. ; Bhosale, Popatrao N. ; Mane, Sambhaji R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-381448f8a75842d634b4c74b84a462efeef4c73f4a7d8e68942f4ba23f79e0b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acids</topic><topic>Alternative energy sources</topic><topic>Crystal structure</topic><topic>Crystallites</topic><topic>Efficiency</topic><topic>Energy bands</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>Energy harvesting</topic><topic>Energy resources</topic><topic>Indium</topic><topic>Investigations</topic><topic>Lithium</topic><topic>Microspheres</topic><topic>Morphology</topic><topic>Photocathodes</topic><topic>Photovoltaic cells</topic><topic>Renewable resources</topic><topic>Rubidium</topic><topic>Solar energy</topic><topic>Spectrum analysis</topic><topic>Synthesis</topic><topic>Thin films</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadaf, Sameer N.</creatorcontrib><creatorcontrib>Patil, Satish S.</creatorcontrib><creatorcontrib>Kalantre, Vilasrao A.</creatorcontrib><creatorcontrib>Mali, Sawanta S.</creatorcontrib><creatorcontrib>Patil, Jyoti V.</creatorcontrib><creatorcontrib>Hong, Chang Kook</creatorcontrib><creatorcontrib>Patil, Sharadchandra S.</creatorcontrib><creatorcontrib>Bhosale, Popatrao N.</creatorcontrib><creatorcontrib>Mane, Sambhaji R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadaf, Sameer N.</au><au>Patil, Satish S.</au><au>Kalantre, Vilasrao A.</au><au>Mali, Sawanta S.</au><au>Patil, Jyoti V.</au><au>Hong, Chang Kook</au><au>Patil, Sharadchandra S.</au><au>Bhosale, Popatrao N.</au><au>Mane, Sambhaji R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Environment Friendly Hydrothermally Synthesized Li+, Rb+, In3+ Intercalated Phosphotungstate (PW12O40) Thin Films</atitle><jtitle>Materials</jtitle><date>2023-01-17</date><risdate>2023</risdate><volume>16</volume><issue>3</issue><spage>888</spage><pages>888-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In the present investigation, a one-step hydrothermal approach is proposed to synthesize Li+, Rb+, and In3+intercalated PW12O40 (PTA) thin films. The photoelectrochemical performance of the deposited Li3PW12O40 (Li−PTA), Rb3PW12O40 (Rb−PTA), and In3PW12O40 (In−PTA) photocathodes were investigated using a two-electrode cell configuration of FTO/Li3PW12O40/(0.1 M I−/I3−)aq./Graphite. The energy band gaps of 2.24, 2.11, and 2.13 eV were observed for the Li−PTA, Rb−PTA, and In−PTA films, respectively, as a function of Li+, Rb+, and In3+. The evolution of the spinal cubic crystal structure with increased crystallite size was observed for Rb+ intercalation within the PTA Keggin structure, which was confirmed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) revealed a modification in the surface morphology from a rod-like structure to a densely packed, uniform, and interconnected microsphere to small and large-sized microspheres for Li−PTA, Rb−PTA, and In−PTA, respectively. Compositional studies confirmed that the composing elements of Li, Rb, In, P, W, and O ions are well in accordance with their arrangement for Li+, Rb+, In3+, P5+, W6+, and O2− valence states. Furthermore, the J-V performance of the deposited photocathode shows power conversion efficiencies (PCE) of 1.25%, 3.03%, and 1.62%, as a function of the incorporation of Li+, Rb+, and In3+ ions. This work offers a one-step hydrothermal approach that is a prominent way to develop Li+, Rb+, and In3+ ions intercalated PTA, i.e., Li3PW12O40, Rb3PW12O40, and In3PW12O40 photocathodes for competent solar energy harvesting.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36769895</pmid><doi>10.3390/ma16030888</doi><orcidid>https://orcid.org/0000-0003-0979-6730</orcidid><orcidid>https://orcid.org/0000-0002-4973-4203</orcidid><orcidid>https://orcid.org/0000-0003-1959-4024</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2023-01, Vol.16 (3), p.888 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9917870 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Acids Alternative energy sources Crystal structure Crystallites Efficiency Energy bands Energy conversion efficiency Energy gap Energy harvesting Energy resources Indium Investigations Lithium Microspheres Morphology Photocathodes Photovoltaic cells Renewable resources Rubidium Solar energy Spectrum analysis Synthesis Thin films Valence |
title | Towards Environment Friendly Hydrothermally Synthesized Li+, Rb+, In3+ Intercalated Phosphotungstate (PW12O40) Thin Films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A06%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Environment%20Friendly%20Hydrothermally%20Synthesized%20Li+,%20Rb+,%20In3+%20Intercalated%20Phosphotungstate%20(PW12O40)%20Thin%20Films&rft.jtitle=Materials&rft.au=Nadaf,%20Sameer%20N.&rft.date=2023-01-17&rft.volume=16&rft.issue=3&rft.spage=888&rft.pages=888-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma16030888&rft_dat=%3Cproquest_pubme%3E2774930052%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774930052&rft_id=info:pmid/36769895&rfr_iscdi=true |