Insights into Cell-Specific Functions of Microtubules in Skeletal Muscle Development and Homeostasis

The contractile cells of skeletal muscles, called myofibers, are elongated multinucleated syncytia formed and maintained by the fusion of proliferative myoblasts. Human myofibers can be hundreds of microns in diameter and millimeters in length. Myofibers are non-mitotic, obviating the need for micro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2023-02, Vol.24 (3), p.2903
Hauptverfasser: Lucas, Lathan, Cooper, Thomas A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 2903
container_title International journal of molecular sciences
container_volume 24
creator Lucas, Lathan
Cooper, Thomas A
description The contractile cells of skeletal muscles, called myofibers, are elongated multinucleated syncytia formed and maintained by the fusion of proliferative myoblasts. Human myofibers can be hundreds of microns in diameter and millimeters in length. Myofibers are non-mitotic, obviating the need for microtubules in cell division. However, microtubules have been adapted to the unique needs of these cells and are critical for myofiber development and function. Microtubules in mature myofibers are highly dynamic, and studies in several experimental systems have demonstrated the requirements for microtubules in the unique features of muscle biology including myoblast fusion, peripheral localization of nuclei, assembly of the sarcomere, transport and signaling. Microtubule-binding proteins have also been adapted to the needs of the skeletal muscle including the expression of skeletal muscle-specific protein isoforms generated by alternative splicing. Here, we will outline the different roles microtubules play in skeletal muscle cells, describe how microtubule abnormalities can lead to muscle disease and discuss the broader implications for microtubule function.
doi_str_mv 10.3390/ijms24032903
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9917663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774924659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-532ee78e04bd6be7bd9f6b448aeab7c32f9c4610ae71e3e1ad004140b6a0f9c73</originalsourceid><addsrcrecordid>eNpdkc1LHTEUxUOpVKvddV0C3bhwar4medkI8tQqKC5s1yGTuaN5zSTPSUbof28eWnl2dS-cH4d77kHoKyU_ONfk2K_GzAThTBP-Ae1RwVhDiFQft_Zd9DnnFSGMs1Z_QrtcKqkZW-yh_ipmf_9QMvaxJLyEEJq7NTg_eIcv5uiKTzHjNOAb76ZU5m4OsIHx3R8IUGzAN3N2AfAZPEFI6xFiwTb2-DKNkHKx2ecDtDPYkOHL69xHvy_Ofy0vm-vbn1fL0-vGCcpK03IGoBZARNfLDlTX60F2Qiws2E45zgbthKTEgqLAgdqeEEEF6aQlVVJ8H528-K7nboTe1VMmG8x68qOd_ppkvXmvRP9g7tOT0ZoqKXk1OHw1mNLjDLmY0WdXf2IjpDkbplQrWcsFq-j3_9BVmqdY420ooZmQra7U0QtVf5fzBMPbMZSYTX1mu76Kf9sO8Ab_64s_A69VmGI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774924659</pqid></control><display><type>article</type><title>Insights into Cell-Specific Functions of Microtubules in Skeletal Muscle Development and Homeostasis</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Lucas, Lathan ; Cooper, Thomas A</creator><creatorcontrib>Lucas, Lathan ; Cooper, Thomas A</creatorcontrib><description>The contractile cells of skeletal muscles, called myofibers, are elongated multinucleated syncytia formed and maintained by the fusion of proliferative myoblasts. Human myofibers can be hundreds of microns in diameter and millimeters in length. Myofibers are non-mitotic, obviating the need for microtubules in cell division. However, microtubules have been adapted to the unique needs of these cells and are critical for myofiber development and function. Microtubules in mature myofibers are highly dynamic, and studies in several experimental systems have demonstrated the requirements for microtubules in the unique features of muscle biology including myoblast fusion, peripheral localization of nuclei, assembly of the sarcomere, transport and signaling. Microtubule-binding proteins have also been adapted to the needs of the skeletal muscle including the expression of skeletal muscle-specific protein isoforms generated by alternative splicing. Here, we will outline the different roles microtubules play in skeletal muscle cells, describe how microtubule abnormalities can lead to muscle disease and discuss the broader implications for microtubule function.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms24032903</identifier><identifier>PMID: 36769228</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Abnormalities ; Alternative splicing ; Cell Differentiation ; Cell division ; Homeostasis ; Humans ; Isoforms ; Localization ; Microtubules ; Muscle contraction ; Muscle Development ; Muscle Fibers, Skeletal - metabolism ; Muscle, Skeletal - metabolism ; Muscles ; Musculoskeletal system ; Myoblasts ; Myogenesis ; Nuclear transport ; Protein transport ; Proteins ; Review ; Roles ; Skeletal muscle ; Splicing ; Syncytia</subject><ispartof>International journal of molecular sciences, 2023-02, Vol.24 (3), p.2903</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-532ee78e04bd6be7bd9f6b448aeab7c32f9c4610ae71e3e1ad004140b6a0f9c73</citedby><cites>FETCH-LOGICAL-c412t-532ee78e04bd6be7bd9f6b448aeab7c32f9c4610ae71e3e1ad004140b6a0f9c73</cites><orcidid>0000-0002-8493-0015 ; 0000-0002-9238-0578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917663/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917663/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36769228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lucas, Lathan</creatorcontrib><creatorcontrib>Cooper, Thomas A</creatorcontrib><title>Insights into Cell-Specific Functions of Microtubules in Skeletal Muscle Development and Homeostasis</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>The contractile cells of skeletal muscles, called myofibers, are elongated multinucleated syncytia formed and maintained by the fusion of proliferative myoblasts. Human myofibers can be hundreds of microns in diameter and millimeters in length. Myofibers are non-mitotic, obviating the need for microtubules in cell division. However, microtubules have been adapted to the unique needs of these cells and are critical for myofiber development and function. Microtubules in mature myofibers are highly dynamic, and studies in several experimental systems have demonstrated the requirements for microtubules in the unique features of muscle biology including myoblast fusion, peripheral localization of nuclei, assembly of the sarcomere, transport and signaling. Microtubule-binding proteins have also been adapted to the needs of the skeletal muscle including the expression of skeletal muscle-specific protein isoforms generated by alternative splicing. Here, we will outline the different roles microtubules play in skeletal muscle cells, describe how microtubule abnormalities can lead to muscle disease and discuss the broader implications for microtubule function.</description><subject>Abnormalities</subject><subject>Alternative splicing</subject><subject>Cell Differentiation</subject><subject>Cell division</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Isoforms</subject><subject>Localization</subject><subject>Microtubules</subject><subject>Muscle contraction</subject><subject>Muscle Development</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Myoblasts</subject><subject>Myogenesis</subject><subject>Nuclear transport</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Review</subject><subject>Roles</subject><subject>Skeletal muscle</subject><subject>Splicing</subject><subject>Syncytia</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1LHTEUxUOpVKvddV0C3bhwar4medkI8tQqKC5s1yGTuaN5zSTPSUbof28eWnl2dS-cH4d77kHoKyU_ONfk2K_GzAThTBP-Ae1RwVhDiFQft_Zd9DnnFSGMs1Z_QrtcKqkZW-yh_ipmf_9QMvaxJLyEEJq7NTg_eIcv5uiKTzHjNOAb76ZU5m4OsIHx3R8IUGzAN3N2AfAZPEFI6xFiwTb2-DKNkHKx2ecDtDPYkOHL69xHvy_Ofy0vm-vbn1fL0-vGCcpK03IGoBZARNfLDlTX60F2Qiws2E45zgbthKTEgqLAgdqeEEEF6aQlVVJ8H528-K7nboTe1VMmG8x68qOd_ppkvXmvRP9g7tOT0ZoqKXk1OHw1mNLjDLmY0WdXf2IjpDkbplQrWcsFq-j3_9BVmqdY420ooZmQra7U0QtVf5fzBMPbMZSYTX1mu76Kf9sO8Ab_64s_A69VmGI</recordid><startdate>20230202</startdate><enddate>20230202</enddate><creator>Lucas, Lathan</creator><creator>Cooper, Thomas A</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8493-0015</orcidid><orcidid>https://orcid.org/0000-0002-9238-0578</orcidid></search><sort><creationdate>20230202</creationdate><title>Insights into Cell-Specific Functions of Microtubules in Skeletal Muscle Development and Homeostasis</title><author>Lucas, Lathan ; Cooper, Thomas A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-532ee78e04bd6be7bd9f6b448aeab7c32f9c4610ae71e3e1ad004140b6a0f9c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abnormalities</topic><topic>Alternative splicing</topic><topic>Cell Differentiation</topic><topic>Cell division</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Isoforms</topic><topic>Localization</topic><topic>Microtubules</topic><topic>Muscle contraction</topic><topic>Muscle Development</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Myoblasts</topic><topic>Myogenesis</topic><topic>Nuclear transport</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Review</topic><topic>Roles</topic><topic>Skeletal muscle</topic><topic>Splicing</topic><topic>Syncytia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucas, Lathan</creatorcontrib><creatorcontrib>Cooper, Thomas A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucas, Lathan</au><au>Cooper, Thomas A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into Cell-Specific Functions of Microtubules in Skeletal Muscle Development and Homeostasis</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2023-02-02</date><risdate>2023</risdate><volume>24</volume><issue>3</issue><spage>2903</spage><pages>2903-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>The contractile cells of skeletal muscles, called myofibers, are elongated multinucleated syncytia formed and maintained by the fusion of proliferative myoblasts. Human myofibers can be hundreds of microns in diameter and millimeters in length. Myofibers are non-mitotic, obviating the need for microtubules in cell division. However, microtubules have been adapted to the unique needs of these cells and are critical for myofiber development and function. Microtubules in mature myofibers are highly dynamic, and studies in several experimental systems have demonstrated the requirements for microtubules in the unique features of muscle biology including myoblast fusion, peripheral localization of nuclei, assembly of the sarcomere, transport and signaling. Microtubule-binding proteins have also been adapted to the needs of the skeletal muscle including the expression of skeletal muscle-specific protein isoforms generated by alternative splicing. Here, we will outline the different roles microtubules play in skeletal muscle cells, describe how microtubule abnormalities can lead to muscle disease and discuss the broader implications for microtubule function.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36769228</pmid><doi>10.3390/ijms24032903</doi><orcidid>https://orcid.org/0000-0002-8493-0015</orcidid><orcidid>https://orcid.org/0000-0002-9238-0578</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2023-02, Vol.24 (3), p.2903
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9917663
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Abnormalities
Alternative splicing
Cell Differentiation
Cell division
Homeostasis
Humans
Isoforms
Localization
Microtubules
Muscle contraction
Muscle Development
Muscle Fibers, Skeletal - metabolism
Muscle, Skeletal - metabolism
Muscles
Musculoskeletal system
Myoblasts
Myogenesis
Nuclear transport
Protein transport
Proteins
Review
Roles
Skeletal muscle
Splicing
Syncytia
title Insights into Cell-Specific Functions of Microtubules in Skeletal Muscle Development and Homeostasis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20Cell-Specific%20Functions%20of%20Microtubules%20in%20Skeletal%20Muscle%20Development%20and%20Homeostasis&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Lucas,%20Lathan&rft.date=2023-02-02&rft.volume=24&rft.issue=3&rft.spage=2903&rft.pages=2903-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms24032903&rft_dat=%3Cproquest_pubme%3E2774924659%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774924659&rft_id=info:pmid/36769228&rfr_iscdi=true