Automatic Detection of Oral Squamous Cell Carcinoma from Histopathological Images of Oral Mucosa Using Deep Convolutional Neural Network

Worldwide, oral cancer is the sixth most common type of cancer. India is in 2nd position, with the highest number of oral cancer patients. To the population of oral cancer patients, India contributes to almost one-third of the total count. Among several types of oral cancer, the most common and domi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2023-01, Vol.20 (3), p.2131
Hauptverfasser: Das, Madhusmita, Dash, Rasmita, Mishra, Sambit Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 2131
container_title International journal of environmental research and public health
container_volume 20
creator Das, Madhusmita
Dash, Rasmita
Mishra, Sambit Kumar
description Worldwide, oral cancer is the sixth most common type of cancer. India is in 2nd position, with the highest number of oral cancer patients. To the population of oral cancer patients, India contributes to almost one-third of the total count. Among several types of oral cancer, the most common and dominant one is oral squamous cell carcinoma (OSCC). The major reason for oral cancer is tobacco consumption, excessive alcohol consumption, unhygienic mouth condition, betel quid eating, viral infection (namely human papillomavirus), etc. The early detection of oral cancer type OSCC, in its preliminary stage, gives more chances for better treatment and proper therapy. In this paper, author proposes a convolutional neural network model, for the automatic and early detection of OSCC, and for experimental purposes, histopathological oral cancer images are considered. The proposed model is compared and analyzed with state-of-the-art deep learning models like VGG16, VGG19, Alexnet, ResNet50, ResNet101, Mobile Net and Inception Net. The proposed model achieved a cross-validation accuracy of 97.82%, which indicates the suitability of the proposed approach for the automatic classification of oral cancer data.
doi_str_mv 10.3390/ijerph20032131
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9915186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775620952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3331-6cabcba9f86638947a1d92a14f8dd9cdda2261372f87791cbdbf8c0a32142d203</originalsourceid><addsrcrecordid>eNpdkUlvFDEQhS0URDauOUaWcuEywUuP274gRQ0hkQI5hJytard7xkN3u-MliH_Az8ZZGCWcylJ99Vz1HkJHlJxyrshHt7FhXjNCOKOcvkF7VAiyqAShOy_eu2g_xk2BZCXUO7TLRS3qSsk99OcsJz9CcgZ_tsma5PyEfY-vAwz45i7D6HPEjR0G3EAwbiow7oMf8YWLyc-Q1n7wK2cKfjnCysbt9LdsfAR8G920KuJ2xo2f7v2QH_4o_e82h8eSfvnw8xC97WGI9v1zPUC3519-NBeLq-uvl83Z1cJwzulCGGhNC6qXQnCpqhpopxjQqpddp0zXAWOC8pr1sq4VNW3X9tIQKPZUrGOEH6BPT7pzbkfbGTulsoWegxsh_NYenH7dmdxar_y9VoouqRRF4MOzQPB32cakRxdNMQgmW7zSrK6XghG1ZAU9-Q_d-BzK7Y9UJZXiYlmo0yfKBB9jsP12GUr0Q8j6dchl4PjlCVv8X6r8L-8Ypmw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774899365</pqid></control><display><type>article</type><title>Automatic Detection of Oral Squamous Cell Carcinoma from Histopathological Images of Oral Mucosa Using Deep Convolutional Neural Network</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Das, Madhusmita ; Dash, Rasmita ; Mishra, Sambit Kumar</creator><creatorcontrib>Das, Madhusmita ; Dash, Rasmita ; Mishra, Sambit Kumar</creatorcontrib><description>Worldwide, oral cancer is the sixth most common type of cancer. India is in 2nd position, with the highest number of oral cancer patients. To the population of oral cancer patients, India contributes to almost one-third of the total count. Among several types of oral cancer, the most common and dominant one is oral squamous cell carcinoma (OSCC). The major reason for oral cancer is tobacco consumption, excessive alcohol consumption, unhygienic mouth condition, betel quid eating, viral infection (namely human papillomavirus), etc. The early detection of oral cancer type OSCC, in its preliminary stage, gives more chances for better treatment and proper therapy. In this paper, author proposes a convolutional neural network model, for the automatic and early detection of OSCC, and for experimental purposes, histopathological oral cancer images are considered. The proposed model is compared and analyzed with state-of-the-art deep learning models like VGG16, VGG19, Alexnet, ResNet50, ResNet101, Mobile Net and Inception Net. The proposed model achieved a cross-validation accuracy of 97.82%, which indicates the suitability of the proposed approach for the automatic classification of oral cancer data.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph20032131</identifier><identifier>PMID: 36767498</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Alcohol ; Algorithms ; Brain cancer ; Carcinoma, Squamous Cell - epidemiology ; Classification ; Datasets ; Decision trees ; Deep learning ; Head and Neck Neoplasms ; Human papillomavirus ; Humans ; Keratin ; Machine learning ; Medical imaging ; Medical research ; Morphology ; Mouth Mucosa ; Mouth Neoplasms - epidemiology ; Neural networks ; Neural Networks, Computer ; Oral cancer ; Oral carcinoma ; Oral squamous cell carcinoma ; Physicians ; Squamous cell carcinoma ; Squamous Cell Carcinoma of Head and Neck ; Support vector machines ; Tobacco</subject><ispartof>International journal of environmental research and public health, 2023-01, Vol.20 (3), p.2131</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3331-6cabcba9f86638947a1d92a14f8dd9cdda2261372f87791cbdbf8c0a32142d203</citedby><cites>FETCH-LOGICAL-c3331-6cabcba9f86638947a1d92a14f8dd9cdda2261372f87791cbdbf8c0a32142d203</cites><orcidid>0000-0002-3737-5223 ; 0000-0002-1581-4985 ; 0000-0002-2235-7516</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915186/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915186/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36767498$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Das, Madhusmita</creatorcontrib><creatorcontrib>Dash, Rasmita</creatorcontrib><creatorcontrib>Mishra, Sambit Kumar</creatorcontrib><title>Automatic Detection of Oral Squamous Cell Carcinoma from Histopathological Images of Oral Mucosa Using Deep Convolutional Neural Network</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>Worldwide, oral cancer is the sixth most common type of cancer. India is in 2nd position, with the highest number of oral cancer patients. To the population of oral cancer patients, India contributes to almost one-third of the total count. Among several types of oral cancer, the most common and dominant one is oral squamous cell carcinoma (OSCC). The major reason for oral cancer is tobacco consumption, excessive alcohol consumption, unhygienic mouth condition, betel quid eating, viral infection (namely human papillomavirus), etc. The early detection of oral cancer type OSCC, in its preliminary stage, gives more chances for better treatment and proper therapy. In this paper, author proposes a convolutional neural network model, for the automatic and early detection of OSCC, and for experimental purposes, histopathological oral cancer images are considered. The proposed model is compared and analyzed with state-of-the-art deep learning models like VGG16, VGG19, Alexnet, ResNet50, ResNet101, Mobile Net and Inception Net. The proposed model achieved a cross-validation accuracy of 97.82%, which indicates the suitability of the proposed approach for the automatic classification of oral cancer data.</description><subject>Accuracy</subject><subject>Alcohol</subject><subject>Algorithms</subject><subject>Brain cancer</subject><subject>Carcinoma, Squamous Cell - epidemiology</subject><subject>Classification</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Deep learning</subject><subject>Head and Neck Neoplasms</subject><subject>Human papillomavirus</subject><subject>Humans</subject><subject>Keratin</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Morphology</subject><subject>Mouth Mucosa</subject><subject>Mouth Neoplasms - epidemiology</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Oral cancer</subject><subject>Oral carcinoma</subject><subject>Oral squamous cell carcinoma</subject><subject>Physicians</subject><subject>Squamous cell carcinoma</subject><subject>Squamous Cell Carcinoma of Head and Neck</subject><subject>Support vector machines</subject><subject>Tobacco</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkUlvFDEQhS0URDauOUaWcuEywUuP274gRQ0hkQI5hJytard7xkN3u-MliH_Az8ZZGCWcylJ99Vz1HkJHlJxyrshHt7FhXjNCOKOcvkF7VAiyqAShOy_eu2g_xk2BZCXUO7TLRS3qSsk99OcsJz9CcgZ_tsma5PyEfY-vAwz45i7D6HPEjR0G3EAwbiow7oMf8YWLyc-Q1n7wK2cKfjnCysbt9LdsfAR8G920KuJ2xo2f7v2QH_4o_e82h8eSfvnw8xC97WGI9v1zPUC3519-NBeLq-uvl83Z1cJwzulCGGhNC6qXQnCpqhpopxjQqpddp0zXAWOC8pr1sq4VNW3X9tIQKPZUrGOEH6BPT7pzbkfbGTulsoWegxsh_NYenH7dmdxar_y9VoouqRRF4MOzQPB32cakRxdNMQgmW7zSrK6XghG1ZAU9-Q_d-BzK7Y9UJZXiYlmo0yfKBB9jsP12GUr0Q8j6dchl4PjlCVv8X6r8L-8Ypmw</recordid><startdate>20230124</startdate><enddate>20230124</enddate><creator>Das, Madhusmita</creator><creator>Dash, Rasmita</creator><creator>Mishra, Sambit Kumar</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3737-5223</orcidid><orcidid>https://orcid.org/0000-0002-1581-4985</orcidid><orcidid>https://orcid.org/0000-0002-2235-7516</orcidid></search><sort><creationdate>20230124</creationdate><title>Automatic Detection of Oral Squamous Cell Carcinoma from Histopathological Images of Oral Mucosa Using Deep Convolutional Neural Network</title><author>Das, Madhusmita ; Dash, Rasmita ; Mishra, Sambit Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3331-6cabcba9f86638947a1d92a14f8dd9cdda2261372f87791cbdbf8c0a32142d203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Alcohol</topic><topic>Algorithms</topic><topic>Brain cancer</topic><topic>Carcinoma, Squamous Cell - epidemiology</topic><topic>Classification</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Deep learning</topic><topic>Head and Neck Neoplasms</topic><topic>Human papillomavirus</topic><topic>Humans</topic><topic>Keratin</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Morphology</topic><topic>Mouth Mucosa</topic><topic>Mouth Neoplasms - epidemiology</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Oral cancer</topic><topic>Oral carcinoma</topic><topic>Oral squamous cell carcinoma</topic><topic>Physicians</topic><topic>Squamous cell carcinoma</topic><topic>Squamous Cell Carcinoma of Head and Neck</topic><topic>Support vector machines</topic><topic>Tobacco</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Madhusmita</creatorcontrib><creatorcontrib>Dash, Rasmita</creatorcontrib><creatorcontrib>Mishra, Sambit Kumar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Madhusmita</au><au>Dash, Rasmita</au><au>Mishra, Sambit Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Detection of Oral Squamous Cell Carcinoma from Histopathological Images of Oral Mucosa Using Deep Convolutional Neural Network</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2023-01-24</date><risdate>2023</risdate><volume>20</volume><issue>3</issue><spage>2131</spage><pages>2131-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>Worldwide, oral cancer is the sixth most common type of cancer. India is in 2nd position, with the highest number of oral cancer patients. To the population of oral cancer patients, India contributes to almost one-third of the total count. Among several types of oral cancer, the most common and dominant one is oral squamous cell carcinoma (OSCC). The major reason for oral cancer is tobacco consumption, excessive alcohol consumption, unhygienic mouth condition, betel quid eating, viral infection (namely human papillomavirus), etc. The early detection of oral cancer type OSCC, in its preliminary stage, gives more chances for better treatment and proper therapy. In this paper, author proposes a convolutional neural network model, for the automatic and early detection of OSCC, and for experimental purposes, histopathological oral cancer images are considered. The proposed model is compared and analyzed with state-of-the-art deep learning models like VGG16, VGG19, Alexnet, ResNet50, ResNet101, Mobile Net and Inception Net. The proposed model achieved a cross-validation accuracy of 97.82%, which indicates the suitability of the proposed approach for the automatic classification of oral cancer data.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36767498</pmid><doi>10.3390/ijerph20032131</doi><orcidid>https://orcid.org/0000-0002-3737-5223</orcidid><orcidid>https://orcid.org/0000-0002-1581-4985</orcidid><orcidid>https://orcid.org/0000-0002-2235-7516</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-4601
ispartof International journal of environmental research and public health, 2023-01, Vol.20 (3), p.2131
issn 1660-4601
1661-7827
1660-4601
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9915186
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Accuracy
Alcohol
Algorithms
Brain cancer
Carcinoma, Squamous Cell - epidemiology
Classification
Datasets
Decision trees
Deep learning
Head and Neck Neoplasms
Human papillomavirus
Humans
Keratin
Machine learning
Medical imaging
Medical research
Morphology
Mouth Mucosa
Mouth Neoplasms - epidemiology
Neural networks
Neural Networks, Computer
Oral cancer
Oral carcinoma
Oral squamous cell carcinoma
Physicians
Squamous cell carcinoma
Squamous Cell Carcinoma of Head and Neck
Support vector machines
Tobacco
title Automatic Detection of Oral Squamous Cell Carcinoma from Histopathological Images of Oral Mucosa Using Deep Convolutional Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Detection%20of%20Oral%20Squamous%20Cell%20Carcinoma%20from%20Histopathological%20Images%20of%20Oral%20Mucosa%20Using%20Deep%20Convolutional%20Neural%20Network&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Das,%20Madhusmita&rft.date=2023-01-24&rft.volume=20&rft.issue=3&rft.spage=2131&rft.pages=2131-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph20032131&rft_dat=%3Cproquest_pubme%3E2775620952%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774899365&rft_id=info:pmid/36767498&rfr_iscdi=true