SOCS1 Deficiency Promotes Hepatocellular Carcinoma via SOCS3-Dependent CDKN1A Induction and NRF2 Activation
SOCS1 deficiency, which increases susceptibility to hepatocellular carcinoma (HCC), promotes CDKN1A expression in the liver. High CDKN1A expression correlates with disease severity in many cancers. Here, we demonstrate a crucial pathogenic role of CDKN1A in diethyl nitrosamine (DEN)-induced HCC in S...
Gespeichert in:
Veröffentlicht in: | Cancers 2023-01, Vol.15 (3), p.905 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 905 |
container_title | Cancers |
container_volume | 15 |
creator | Khan, Md Gulam Musawwir Boufaied, Nadia Yeganeh, Mehdi Kandhi, Rajani Petkiewicz, Stephanie Sharma, Ankur Yoshimura, Akihiko Ferbeyre, Gerardo Labbé, David P Ramanathan, Sheela Ilangumaran, Subburaj |
description | SOCS1 deficiency, which increases susceptibility to hepatocellular carcinoma (HCC), promotes CDKN1A expression in the liver. High CDKN1A expression correlates with disease severity in many cancers. Here, we demonstrate a crucial pathogenic role of CDKN1A in diethyl nitrosamine (DEN)-induced HCC in SOCS1-deficient mice. Mechanistic studies on DEN-induced genotoxic response revealed that SOCS1-deficient hepatocytes upregulate SOCS3 expression, SOCS3 promotes p53 activation, and
induction that were abolished by deleting either
or
. Previous reports implicate CDKN1A in promoting oxidative stress response mediated by NRF2, which is required for DEN-induced hepatocarcinogenesis. We show increased induction of NRF2 and its target genes in SOCS1-deficient livers following DEN treatment that was abrogated by the deletion of either
or
. Loss of SOCS3 in SOCS1-deficient mice reduced the growth of DEN-induced HCC without affecting tumor incidence. In the TCGA-LIHC dataset, the
-low/
-high subgroup displayed increased
expression, enrichment of NRF2 transcriptional signature, faster disease progression, and poor prognosis. Overall, our findings show that SOCS1 deficiency in hepatocytes promotes compensatory SOCS3 expression, p53 activation, CDKN1A induction, and NRF2 activation, which can facilitate cellular adaptation to oxidative stress and promote neoplastic growth. Thus, the NRF2 pathway represents a potential therapeutic target in
-low/
-high HCC cases. |
doi_str_mv | 10.3390/cancers15030905 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9913612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743010186</galeid><sourcerecordid>A743010186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-5a5b3d63d492f22f84c3d4d55433c28e32e7d8726630a16025a39b94805cefca3</originalsourceid><addsrcrecordid>eNptUs9vFSEQJkZjm9qzN0Pixcu2_FhguZi87LO2sWmN1TPhsbOVugtP2H1J_3vZtNa2ERIYZr7vgxkGobeUHHGuybGzwUHKVBBONBEv0D4jilVS6vrlI3sPHeZ8Q8rgnCqpXqM9LpUUjWT76NfVZXtF8Rp67zwEd4u_pjjGCTI-ha2dooNhmAebcGuT8yGOFu-8xQuNV2vYQuggTLhdf7mgK3wWutlNPgZsQ4cvvp0wvCrnnV18b9Cr3g4ZDu_3A_Tj5NP39rQ6v_x81q7OKydEPVXCig3vJO9qzXrG-qZ2xe5KjHPHGuAMVNcoJiUnlkrChOV6o-uGCAe9s_wAfbzT3c6bETpX3pfsYLbJjzbdmmi9eRoJ_qe5jjujNeWSsiLw4V4gxd8z5MmMPi-FsAHinA1TSsiy6AX6_hn0Js4plPQWVN1oVqvmH-raDmB86GO51y2iZqVqTiihjSyoo_-gyuxg9C6G8kfF_4RwfEdwKeacoH_IkRKztIh51iKF8e5xaR7wfxuC_wEQcrVU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774892478</pqid></control><display><type>article</type><title>SOCS1 Deficiency Promotes Hepatocellular Carcinoma via SOCS3-Dependent CDKN1A Induction and NRF2 Activation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Khan, Md Gulam Musawwir ; Boufaied, Nadia ; Yeganeh, Mehdi ; Kandhi, Rajani ; Petkiewicz, Stephanie ; Sharma, Ankur ; Yoshimura, Akihiko ; Ferbeyre, Gerardo ; Labbé, David P ; Ramanathan, Sheela ; Ilangumaran, Subburaj</creator><creatorcontrib>Khan, Md Gulam Musawwir ; Boufaied, Nadia ; Yeganeh, Mehdi ; Kandhi, Rajani ; Petkiewicz, Stephanie ; Sharma, Ankur ; Yoshimura, Akihiko ; Ferbeyre, Gerardo ; Labbé, David P ; Ramanathan, Sheela ; Ilangumaran, Subburaj</creatorcontrib><description>SOCS1 deficiency, which increases susceptibility to hepatocellular carcinoma (HCC), promotes CDKN1A expression in the liver. High CDKN1A expression correlates with disease severity in many cancers. Here, we demonstrate a crucial pathogenic role of CDKN1A in diethyl nitrosamine (DEN)-induced HCC in SOCS1-deficient mice. Mechanistic studies on DEN-induced genotoxic response revealed that SOCS1-deficient hepatocytes upregulate SOCS3 expression, SOCS3 promotes p53 activation, and
induction that were abolished by deleting either
or
. Previous reports implicate CDKN1A in promoting oxidative stress response mediated by NRF2, which is required for DEN-induced hepatocarcinogenesis. We show increased induction of NRF2 and its target genes in SOCS1-deficient livers following DEN treatment that was abrogated by the deletion of either
or
. Loss of SOCS3 in SOCS1-deficient mice reduced the growth of DEN-induced HCC without affecting tumor incidence. In the TCGA-LIHC dataset, the
-low/
-high subgroup displayed increased
expression, enrichment of NRF2 transcriptional signature, faster disease progression, and poor prognosis. Overall, our findings show that SOCS1 deficiency in hepatocytes promotes compensatory SOCS3 expression, p53 activation, CDKN1A induction, and NRF2 activation, which can facilitate cellular adaptation to oxidative stress and promote neoplastic growth. Thus, the NRF2 pathway represents a potential therapeutic target in
-low/
-high HCC cases.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers15030905</identifier><identifier>PMID: 36765862</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animal models ; Cyclin-dependent kinases ; Cytokines ; Development and progression ; Gene expression ; Genetic aspects ; Genotoxicity ; Growth factors ; Health aspects ; Hepatocellular carcinoma ; Hepatocytes ; Hepatoma ; Kinases ; Liver cancer ; Medical prognosis ; NRF2 protein ; Oxidative stress ; p53 Protein ; Physiological aspects ; Protein expression ; Proteins ; Software ; Survival analysis ; Therapeutic applications ; Therapeutic targets ; Transcriptional coactivators ; Tumors</subject><ispartof>Cancers, 2023-01, Vol.15 (3), p.905</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-5a5b3d63d492f22f84c3d4d55433c28e32e7d8726630a16025a39b94805cefca3</citedby><cites>FETCH-LOGICAL-c554t-5a5b3d63d492f22f84c3d4d55433c28e32e7d8726630a16025a39b94805cefca3</cites><orcidid>0000-0001-7424-580X ; 0000-0002-6862-136X ; 0000-0001-8864-8765 ; 0000-0002-2146-618X ; 0000-0002-7563-576X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913612/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913612/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36765862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Md Gulam Musawwir</creatorcontrib><creatorcontrib>Boufaied, Nadia</creatorcontrib><creatorcontrib>Yeganeh, Mehdi</creatorcontrib><creatorcontrib>Kandhi, Rajani</creatorcontrib><creatorcontrib>Petkiewicz, Stephanie</creatorcontrib><creatorcontrib>Sharma, Ankur</creatorcontrib><creatorcontrib>Yoshimura, Akihiko</creatorcontrib><creatorcontrib>Ferbeyre, Gerardo</creatorcontrib><creatorcontrib>Labbé, David P</creatorcontrib><creatorcontrib>Ramanathan, Sheela</creatorcontrib><creatorcontrib>Ilangumaran, Subburaj</creatorcontrib><title>SOCS1 Deficiency Promotes Hepatocellular Carcinoma via SOCS3-Dependent CDKN1A Induction and NRF2 Activation</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>SOCS1 deficiency, which increases susceptibility to hepatocellular carcinoma (HCC), promotes CDKN1A expression in the liver. High CDKN1A expression correlates with disease severity in many cancers. Here, we demonstrate a crucial pathogenic role of CDKN1A in diethyl nitrosamine (DEN)-induced HCC in SOCS1-deficient mice. Mechanistic studies on DEN-induced genotoxic response revealed that SOCS1-deficient hepatocytes upregulate SOCS3 expression, SOCS3 promotes p53 activation, and
induction that were abolished by deleting either
or
. Previous reports implicate CDKN1A in promoting oxidative stress response mediated by NRF2, which is required for DEN-induced hepatocarcinogenesis. We show increased induction of NRF2 and its target genes in SOCS1-deficient livers following DEN treatment that was abrogated by the deletion of either
or
. Loss of SOCS3 in SOCS1-deficient mice reduced the growth of DEN-induced HCC without affecting tumor incidence. In the TCGA-LIHC dataset, the
-low/
-high subgroup displayed increased
expression, enrichment of NRF2 transcriptional signature, faster disease progression, and poor prognosis. Overall, our findings show that SOCS1 deficiency in hepatocytes promotes compensatory SOCS3 expression, p53 activation, CDKN1A induction, and NRF2 activation, which can facilitate cellular adaptation to oxidative stress and promote neoplastic growth. Thus, the NRF2 pathway represents a potential therapeutic target in
-low/
-high HCC cases.</description><subject>Animal models</subject><subject>Cyclin-dependent kinases</subject><subject>Cytokines</subject><subject>Development and progression</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genotoxicity</subject><subject>Growth factors</subject><subject>Health aspects</subject><subject>Hepatocellular carcinoma</subject><subject>Hepatocytes</subject><subject>Hepatoma</subject><subject>Kinases</subject><subject>Liver cancer</subject><subject>Medical prognosis</subject><subject>NRF2 protein</subject><subject>Oxidative stress</subject><subject>p53 Protein</subject><subject>Physiological aspects</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Software</subject><subject>Survival analysis</subject><subject>Therapeutic applications</subject><subject>Therapeutic targets</subject><subject>Transcriptional coactivators</subject><subject>Tumors</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptUs9vFSEQJkZjm9qzN0Pixcu2_FhguZi87LO2sWmN1TPhsbOVugtP2H1J_3vZtNa2ERIYZr7vgxkGobeUHHGuybGzwUHKVBBONBEv0D4jilVS6vrlI3sPHeZ8Q8rgnCqpXqM9LpUUjWT76NfVZXtF8Rp67zwEd4u_pjjGCTI-ha2dooNhmAebcGuT8yGOFu-8xQuNV2vYQuggTLhdf7mgK3wWutlNPgZsQ4cvvp0wvCrnnV18b9Cr3g4ZDu_3A_Tj5NP39rQ6v_x81q7OKydEPVXCig3vJO9qzXrG-qZ2xe5KjHPHGuAMVNcoJiUnlkrChOV6o-uGCAe9s_wAfbzT3c6bETpX3pfsYLbJjzbdmmi9eRoJ_qe5jjujNeWSsiLw4V4gxd8z5MmMPi-FsAHinA1TSsiy6AX6_hn0Js4plPQWVN1oVqvmH-raDmB86GO51y2iZqVqTiihjSyoo_-gyuxg9C6G8kfF_4RwfEdwKeacoH_IkRKztIh51iKF8e5xaR7wfxuC_wEQcrVU</recordid><startdate>20230131</startdate><enddate>20230131</enddate><creator>Khan, Md Gulam Musawwir</creator><creator>Boufaied, Nadia</creator><creator>Yeganeh, Mehdi</creator><creator>Kandhi, Rajani</creator><creator>Petkiewicz, Stephanie</creator><creator>Sharma, Ankur</creator><creator>Yoshimura, Akihiko</creator><creator>Ferbeyre, Gerardo</creator><creator>Labbé, David P</creator><creator>Ramanathan, Sheela</creator><creator>Ilangumaran, Subburaj</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7424-580X</orcidid><orcidid>https://orcid.org/0000-0002-6862-136X</orcidid><orcidid>https://orcid.org/0000-0001-8864-8765</orcidid><orcidid>https://orcid.org/0000-0002-2146-618X</orcidid><orcidid>https://orcid.org/0000-0002-7563-576X</orcidid></search><sort><creationdate>20230131</creationdate><title>SOCS1 Deficiency Promotes Hepatocellular Carcinoma via SOCS3-Dependent CDKN1A Induction and NRF2 Activation</title><author>Khan, Md Gulam Musawwir ; Boufaied, Nadia ; Yeganeh, Mehdi ; Kandhi, Rajani ; Petkiewicz, Stephanie ; Sharma, Ankur ; Yoshimura, Akihiko ; Ferbeyre, Gerardo ; Labbé, David P ; Ramanathan, Sheela ; Ilangumaran, Subburaj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-5a5b3d63d492f22f84c3d4d55433c28e32e7d8726630a16025a39b94805cefca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animal models</topic><topic>Cyclin-dependent kinases</topic><topic>Cytokines</topic><topic>Development and progression</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genotoxicity</topic><topic>Growth factors</topic><topic>Health aspects</topic><topic>Hepatocellular carcinoma</topic><topic>Hepatocytes</topic><topic>Hepatoma</topic><topic>Kinases</topic><topic>Liver cancer</topic><topic>Medical prognosis</topic><topic>NRF2 protein</topic><topic>Oxidative stress</topic><topic>p53 Protein</topic><topic>Physiological aspects</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Software</topic><topic>Survival analysis</topic><topic>Therapeutic applications</topic><topic>Therapeutic targets</topic><topic>Transcriptional coactivators</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Md Gulam Musawwir</creatorcontrib><creatorcontrib>Boufaied, Nadia</creatorcontrib><creatorcontrib>Yeganeh, Mehdi</creatorcontrib><creatorcontrib>Kandhi, Rajani</creatorcontrib><creatorcontrib>Petkiewicz, Stephanie</creatorcontrib><creatorcontrib>Sharma, Ankur</creatorcontrib><creatorcontrib>Yoshimura, Akihiko</creatorcontrib><creatorcontrib>Ferbeyre, Gerardo</creatorcontrib><creatorcontrib>Labbé, David P</creatorcontrib><creatorcontrib>Ramanathan, Sheela</creatorcontrib><creatorcontrib>Ilangumaran, Subburaj</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Md Gulam Musawwir</au><au>Boufaied, Nadia</au><au>Yeganeh, Mehdi</au><au>Kandhi, Rajani</au><au>Petkiewicz, Stephanie</au><au>Sharma, Ankur</au><au>Yoshimura, Akihiko</au><au>Ferbeyre, Gerardo</au><au>Labbé, David P</au><au>Ramanathan, Sheela</au><au>Ilangumaran, Subburaj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SOCS1 Deficiency Promotes Hepatocellular Carcinoma via SOCS3-Dependent CDKN1A Induction and NRF2 Activation</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2023-01-31</date><risdate>2023</risdate><volume>15</volume><issue>3</issue><spage>905</spage><pages>905-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>SOCS1 deficiency, which increases susceptibility to hepatocellular carcinoma (HCC), promotes CDKN1A expression in the liver. High CDKN1A expression correlates with disease severity in many cancers. Here, we demonstrate a crucial pathogenic role of CDKN1A in diethyl nitrosamine (DEN)-induced HCC in SOCS1-deficient mice. Mechanistic studies on DEN-induced genotoxic response revealed that SOCS1-deficient hepatocytes upregulate SOCS3 expression, SOCS3 promotes p53 activation, and
induction that were abolished by deleting either
or
. Previous reports implicate CDKN1A in promoting oxidative stress response mediated by NRF2, which is required for DEN-induced hepatocarcinogenesis. We show increased induction of NRF2 and its target genes in SOCS1-deficient livers following DEN treatment that was abrogated by the deletion of either
or
. Loss of SOCS3 in SOCS1-deficient mice reduced the growth of DEN-induced HCC without affecting tumor incidence. In the TCGA-LIHC dataset, the
-low/
-high subgroup displayed increased
expression, enrichment of NRF2 transcriptional signature, faster disease progression, and poor prognosis. Overall, our findings show that SOCS1 deficiency in hepatocytes promotes compensatory SOCS3 expression, p53 activation, CDKN1A induction, and NRF2 activation, which can facilitate cellular adaptation to oxidative stress and promote neoplastic growth. Thus, the NRF2 pathway represents a potential therapeutic target in
-low/
-high HCC cases.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36765862</pmid><doi>10.3390/cancers15030905</doi><orcidid>https://orcid.org/0000-0001-7424-580X</orcidid><orcidid>https://orcid.org/0000-0002-6862-136X</orcidid><orcidid>https://orcid.org/0000-0001-8864-8765</orcidid><orcidid>https://orcid.org/0000-0002-2146-618X</orcidid><orcidid>https://orcid.org/0000-0002-7563-576X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6694 |
ispartof | Cancers, 2023-01, Vol.15 (3), p.905 |
issn | 2072-6694 2072-6694 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9913612 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Animal models Cyclin-dependent kinases Cytokines Development and progression Gene expression Genetic aspects Genotoxicity Growth factors Health aspects Hepatocellular carcinoma Hepatocytes Hepatoma Kinases Liver cancer Medical prognosis NRF2 protein Oxidative stress p53 Protein Physiological aspects Protein expression Proteins Software Survival analysis Therapeutic applications Therapeutic targets Transcriptional coactivators Tumors |
title | SOCS1 Deficiency Promotes Hepatocellular Carcinoma via SOCS3-Dependent CDKN1A Induction and NRF2 Activation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T11%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SOCS1%20Deficiency%20Promotes%20Hepatocellular%20Carcinoma%20via%20SOCS3-Dependent%20CDKN1A%20Induction%20and%20NRF2%20Activation&rft.jtitle=Cancers&rft.au=Khan,%20Md%20Gulam%20Musawwir&rft.date=2023-01-31&rft.volume=15&rft.issue=3&rft.spage=905&rft.pages=905-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers15030905&rft_dat=%3Cgale_pubme%3EA743010186%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774892478&rft_id=info:pmid/36765862&rft_galeid=A743010186&rfr_iscdi=true |