MR Intensity Normalization Methods Impact Sequence Specific Radiomics Prognostic Model Performance in Primary and Recurrent High-Grade Glioma

This study investigates the impact of different intensity normalization (IN) methods on the overall survival (OS) radiomics models' performance of MR sequences in primary (pHGG) and recurrent high-grade glioma (rHGG). MR scans acquired before radiotherapy were retrieved from two independent coh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2023-02, Vol.15 (3), p.965
Hauptverfasser: Salome, Patrick, Sforazzini, Francesco, Grugnara, Gianluca, Kudak, Andreas, Dostal, Matthias, Herold-Mende, Christel, Heiland, Sabine, Debus, Jürgen, Abdollahi, Amir, Knoll, Maximilian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 965
container_title Cancers
container_volume 15
creator Salome, Patrick
Sforazzini, Francesco
Grugnara, Gianluca
Kudak, Andreas
Dostal, Matthias
Herold-Mende, Christel
Heiland, Sabine
Debus, Jürgen
Abdollahi, Amir
Knoll, Maximilian
description This study investigates the impact of different intensity normalization (IN) methods on the overall survival (OS) radiomics models' performance of MR sequences in primary (pHGG) and recurrent high-grade glioma (rHGG). MR scans acquired before radiotherapy were retrieved from two independent cohorts (rHGG C1: 197, pHGG C2: 141) from multiple scanners (15, 14). The sequences are T1 weighted (w), contrast-enhanced T1w (T1wce), T2w, and T2w-FLAIR. Sequence-specific significant features (SF) associated with OS, extracted from the tumour volume, were derived after applying 15 different IN methods. Survival analyses were conducted using Cox proportional hazard (CPH) and Poisson regression (POI) models. A ranking score was assigned based on the 10-fold cross-validated (CV) concordance index (C-I), mean square error (MSE), and the Akaike information criterion (AICs), to evaluate the methods' performance. Scatter plots of the 10-CV C-I and MSE against the AIC showed an impact on the survival predictions between the IN methods and MR sequences (C1/C2 C-I range: 0.62-0.71/0.61-0.72, MSE range: 0.20-0.42/0.13-0.22). White stripe showed stable results for T1wce (C1/C2 C-I: 0.71/0.65, MSE: 0.21/0.14). Combat (0.68/0.62, 0.22/0.15) and histogram matching (HM, 0.67/0.64, 0.22/0.15) showed consistent prediction results for T2w models. They were also the top-performing methods for T1w in C2 (Combat: 0.67, 0.13; HM: 0.67, 0.13); however, only HM achieved high predictions in C1 (0.66, 0.22). After eliminating IN impacted SF using Spearman's rank-order correlation coefficient, a mean decrease in the C-I and MSE of 0.05 and 0.03 was observed in all four sequences. The IN method impacted the predictive power of survival models; thus, performance is sequence-dependent.
doi_str_mv 10.3390/cancers15030965
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9913466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743010231</galeid><sourcerecordid>A743010231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-4e1b3534ebe124c0c35391f6121b8a7bfea7834dbb78397105b2f0c9b46602343</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEolXpmRuyxIVLWn8lTi5IVQXblbpQbeFsOc5k11ViL3aCVP4D_5mJtt_CPtieeeadsT1Z9p7REyFqemqNtxATK6igdVm8yg45VTwvy1q-frI_yI5TuqE4hGCqVG-zA1Gqsqg5P8z-rtZk6UfwyY235FuIg-ndHzO64MkKxm1oE1kOO2NHcg2_JsCM5HoH1nXOkrVpXRicTeQqho0PaUTjKrTQkyuI3Sw2886j3w0m3hLjW7IGO8UIfiQXbrPNF9G0QBY9Kpl32ZvO9AmO79aj7OfXLz_OL_LL74vl-dllbmVVjbkE1ohCSGiAcWmpxUPNupJx1lRGNR0YVQnZNg0utWK0aHhHbd3IsqRcSHGUfd7r7qZmgNZiMdH0erevUgfj9HOPd1u9Cb91XTOBIijw6U4gBnyVNOrBJQt9bzyEKWmuVFFyVVUK0Y8v0JswRY_XmylZKSkZf6Q2pgftfBcwr51F9ZmSgjKsmyF18h8KZwv4DcFD59D-LOB0H2BjSClC93BHRvXcRPpFE2HEh6dP88Dft4z4ByJPxBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774874412</pqid></control><display><type>article</type><title>MR Intensity Normalization Methods Impact Sequence Specific Radiomics Prognostic Model Performance in Primary and Recurrent High-Grade Glioma</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Salome, Patrick ; Sforazzini, Francesco ; Grugnara, Gianluca ; Kudak, Andreas ; Dostal, Matthias ; Herold-Mende, Christel ; Heiland, Sabine ; Debus, Jürgen ; Abdollahi, Amir ; Knoll, Maximilian</creator><creatorcontrib>Salome, Patrick ; Sforazzini, Francesco ; Grugnara, Gianluca ; Kudak, Andreas ; Dostal, Matthias ; Herold-Mende, Christel ; Heiland, Sabine ; Debus, Jürgen ; Abdollahi, Amir ; Knoll, Maximilian</creatorcontrib><description>This study investigates the impact of different intensity normalization (IN) methods on the overall survival (OS) radiomics models' performance of MR sequences in primary (pHGG) and recurrent high-grade glioma (rHGG). MR scans acquired before radiotherapy were retrieved from two independent cohorts (rHGG C1: 197, pHGG C2: 141) from multiple scanners (15, 14). The sequences are T1 weighted (w), contrast-enhanced T1w (T1wce), T2w, and T2w-FLAIR. Sequence-specific significant features (SF) associated with OS, extracted from the tumour volume, were derived after applying 15 different IN methods. Survival analyses were conducted using Cox proportional hazard (CPH) and Poisson regression (POI) models. A ranking score was assigned based on the 10-fold cross-validated (CV) concordance index (C-I), mean square error (MSE), and the Akaike information criterion (AICs), to evaluate the methods' performance. Scatter plots of the 10-CV C-I and MSE against the AIC showed an impact on the survival predictions between the IN methods and MR sequences (C1/C2 C-I range: 0.62-0.71/0.61-0.72, MSE range: 0.20-0.42/0.13-0.22). White stripe showed stable results for T1wce (C1/C2 C-I: 0.71/0.65, MSE: 0.21/0.14). Combat (0.68/0.62, 0.22/0.15) and histogram matching (HM, 0.67/0.64, 0.22/0.15) showed consistent prediction results for T2w models. They were also the top-performing methods for T1w in C2 (Combat: 0.67, 0.13; HM: 0.67, 0.13); however, only HM achieved high predictions in C1 (0.66, 0.22). After eliminating IN impacted SF using Spearman's rank-order correlation coefficient, a mean decrease in the C-I and MSE of 0.05 and 0.03 was observed in all four sequences. The IN method impacted the predictive power of survival models; thus, performance is sequence-dependent.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers15030965</identifier><identifier>PMID: 36765922</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Biomarkers ; Brain cancer ; Datasets ; Glioma ; Gliomas ; Magnetic resonance imaging ; Medical prognosis ; Methods ; Patients ; Predictions ; Prognosis ; Quality management ; Radiation therapy ; Radiomics ; Regression analysis ; Reproducibility ; Scanners ; Survival ; Tumors</subject><ispartof>Cancers, 2023-02, Vol.15 (3), p.965</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-4e1b3534ebe124c0c35391f6121b8a7bfea7834dbb78397105b2f0c9b46602343</citedby><cites>FETCH-LOGICAL-c488t-4e1b3534ebe124c0c35391f6121b8a7bfea7834dbb78397105b2f0c9b46602343</cites><orcidid>0000-0002-8016-5897 ; 0000-0002-1915-745X ; 0000-0002-1474-1403 ; 0000-0002-9037-3980 ; 0000-0003-1873-235X ; 0000-0003-4978-9156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913466/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913466/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36765922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salome, Patrick</creatorcontrib><creatorcontrib>Sforazzini, Francesco</creatorcontrib><creatorcontrib>Grugnara, Gianluca</creatorcontrib><creatorcontrib>Kudak, Andreas</creatorcontrib><creatorcontrib>Dostal, Matthias</creatorcontrib><creatorcontrib>Herold-Mende, Christel</creatorcontrib><creatorcontrib>Heiland, Sabine</creatorcontrib><creatorcontrib>Debus, Jürgen</creatorcontrib><creatorcontrib>Abdollahi, Amir</creatorcontrib><creatorcontrib>Knoll, Maximilian</creatorcontrib><title>MR Intensity Normalization Methods Impact Sequence Specific Radiomics Prognostic Model Performance in Primary and Recurrent High-Grade Glioma</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>This study investigates the impact of different intensity normalization (IN) methods on the overall survival (OS) radiomics models' performance of MR sequences in primary (pHGG) and recurrent high-grade glioma (rHGG). MR scans acquired before radiotherapy were retrieved from two independent cohorts (rHGG C1: 197, pHGG C2: 141) from multiple scanners (15, 14). The sequences are T1 weighted (w), contrast-enhanced T1w (T1wce), T2w, and T2w-FLAIR. Sequence-specific significant features (SF) associated with OS, extracted from the tumour volume, were derived after applying 15 different IN methods. Survival analyses were conducted using Cox proportional hazard (CPH) and Poisson regression (POI) models. A ranking score was assigned based on the 10-fold cross-validated (CV) concordance index (C-I), mean square error (MSE), and the Akaike information criterion (AICs), to evaluate the methods' performance. Scatter plots of the 10-CV C-I and MSE against the AIC showed an impact on the survival predictions between the IN methods and MR sequences (C1/C2 C-I range: 0.62-0.71/0.61-0.72, MSE range: 0.20-0.42/0.13-0.22). White stripe showed stable results for T1wce (C1/C2 C-I: 0.71/0.65, MSE: 0.21/0.14). Combat (0.68/0.62, 0.22/0.15) and histogram matching (HM, 0.67/0.64, 0.22/0.15) showed consistent prediction results for T2w models. They were also the top-performing methods for T1w in C2 (Combat: 0.67, 0.13; HM: 0.67, 0.13); however, only HM achieved high predictions in C1 (0.66, 0.22). After eliminating IN impacted SF using Spearman's rank-order correlation coefficient, a mean decrease in the C-I and MSE of 0.05 and 0.03 was observed in all four sequences. The IN method impacted the predictive power of survival models; thus, performance is sequence-dependent.</description><subject>Algorithms</subject><subject>Biomarkers</subject><subject>Brain cancer</subject><subject>Datasets</subject><subject>Glioma</subject><subject>Gliomas</subject><subject>Magnetic resonance imaging</subject><subject>Medical prognosis</subject><subject>Methods</subject><subject>Patients</subject><subject>Predictions</subject><subject>Prognosis</subject><subject>Quality management</subject><subject>Radiation therapy</subject><subject>Radiomics</subject><subject>Regression analysis</subject><subject>Reproducibility</subject><subject>Scanners</subject><subject>Survival</subject><subject>Tumors</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkk1v1DAQhiMEolXpmRuyxIVLWn8lTi5IVQXblbpQbeFsOc5k11ViL3aCVP4D_5mJtt_CPtieeeadsT1Z9p7REyFqemqNtxATK6igdVm8yg45VTwvy1q-frI_yI5TuqE4hGCqVG-zA1Gqsqg5P8z-rtZk6UfwyY235FuIg-ndHzO64MkKxm1oE1kOO2NHcg2_JsCM5HoH1nXOkrVpXRicTeQqho0PaUTjKrTQkyuI3Sw2886j3w0m3hLjW7IGO8UIfiQXbrPNF9G0QBY9Kpl32ZvO9AmO79aj7OfXLz_OL_LL74vl-dllbmVVjbkE1ohCSGiAcWmpxUPNupJx1lRGNR0YVQnZNg0utWK0aHhHbd3IsqRcSHGUfd7r7qZmgNZiMdH0erevUgfj9HOPd1u9Cb91XTOBIijw6U4gBnyVNOrBJQt9bzyEKWmuVFFyVVUK0Y8v0JswRY_XmylZKSkZf6Q2pgftfBcwr51F9ZmSgjKsmyF18h8KZwv4DcFD59D-LOB0H2BjSClC93BHRvXcRPpFE2HEh6dP88Dft4z4ByJPxBA</recordid><startdate>20230202</startdate><enddate>20230202</enddate><creator>Salome, Patrick</creator><creator>Sforazzini, Francesco</creator><creator>Grugnara, Gianluca</creator><creator>Kudak, Andreas</creator><creator>Dostal, Matthias</creator><creator>Herold-Mende, Christel</creator><creator>Heiland, Sabine</creator><creator>Debus, Jürgen</creator><creator>Abdollahi, Amir</creator><creator>Knoll, Maximilian</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8016-5897</orcidid><orcidid>https://orcid.org/0000-0002-1915-745X</orcidid><orcidid>https://orcid.org/0000-0002-1474-1403</orcidid><orcidid>https://orcid.org/0000-0002-9037-3980</orcidid><orcidid>https://orcid.org/0000-0003-1873-235X</orcidid><orcidid>https://orcid.org/0000-0003-4978-9156</orcidid></search><sort><creationdate>20230202</creationdate><title>MR Intensity Normalization Methods Impact Sequence Specific Radiomics Prognostic Model Performance in Primary and Recurrent High-Grade Glioma</title><author>Salome, Patrick ; Sforazzini, Francesco ; Grugnara, Gianluca ; Kudak, Andreas ; Dostal, Matthias ; Herold-Mende, Christel ; Heiland, Sabine ; Debus, Jürgen ; Abdollahi, Amir ; Knoll, Maximilian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-4e1b3534ebe124c0c35391f6121b8a7bfea7834dbb78397105b2f0c9b46602343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Biomarkers</topic><topic>Brain cancer</topic><topic>Datasets</topic><topic>Glioma</topic><topic>Gliomas</topic><topic>Magnetic resonance imaging</topic><topic>Medical prognosis</topic><topic>Methods</topic><topic>Patients</topic><topic>Predictions</topic><topic>Prognosis</topic><topic>Quality management</topic><topic>Radiation therapy</topic><topic>Radiomics</topic><topic>Regression analysis</topic><topic>Reproducibility</topic><topic>Scanners</topic><topic>Survival</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salome, Patrick</creatorcontrib><creatorcontrib>Sforazzini, Francesco</creatorcontrib><creatorcontrib>Grugnara, Gianluca</creatorcontrib><creatorcontrib>Kudak, Andreas</creatorcontrib><creatorcontrib>Dostal, Matthias</creatorcontrib><creatorcontrib>Herold-Mende, Christel</creatorcontrib><creatorcontrib>Heiland, Sabine</creatorcontrib><creatorcontrib>Debus, Jürgen</creatorcontrib><creatorcontrib>Abdollahi, Amir</creatorcontrib><creatorcontrib>Knoll, Maximilian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salome, Patrick</au><au>Sforazzini, Francesco</au><au>Grugnara, Gianluca</au><au>Kudak, Andreas</au><au>Dostal, Matthias</au><au>Herold-Mende, Christel</au><au>Heiland, Sabine</au><au>Debus, Jürgen</au><au>Abdollahi, Amir</au><au>Knoll, Maximilian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MR Intensity Normalization Methods Impact Sequence Specific Radiomics Prognostic Model Performance in Primary and Recurrent High-Grade Glioma</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2023-02-02</date><risdate>2023</risdate><volume>15</volume><issue>3</issue><spage>965</spage><pages>965-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>This study investigates the impact of different intensity normalization (IN) methods on the overall survival (OS) radiomics models' performance of MR sequences in primary (pHGG) and recurrent high-grade glioma (rHGG). MR scans acquired before radiotherapy were retrieved from two independent cohorts (rHGG C1: 197, pHGG C2: 141) from multiple scanners (15, 14). The sequences are T1 weighted (w), contrast-enhanced T1w (T1wce), T2w, and T2w-FLAIR. Sequence-specific significant features (SF) associated with OS, extracted from the tumour volume, were derived after applying 15 different IN methods. Survival analyses were conducted using Cox proportional hazard (CPH) and Poisson regression (POI) models. A ranking score was assigned based on the 10-fold cross-validated (CV) concordance index (C-I), mean square error (MSE), and the Akaike information criterion (AICs), to evaluate the methods' performance. Scatter plots of the 10-CV C-I and MSE against the AIC showed an impact on the survival predictions between the IN methods and MR sequences (C1/C2 C-I range: 0.62-0.71/0.61-0.72, MSE range: 0.20-0.42/0.13-0.22). White stripe showed stable results for T1wce (C1/C2 C-I: 0.71/0.65, MSE: 0.21/0.14). Combat (0.68/0.62, 0.22/0.15) and histogram matching (HM, 0.67/0.64, 0.22/0.15) showed consistent prediction results for T2w models. They were also the top-performing methods for T1w in C2 (Combat: 0.67, 0.13; HM: 0.67, 0.13); however, only HM achieved high predictions in C1 (0.66, 0.22). After eliminating IN impacted SF using Spearman's rank-order correlation coefficient, a mean decrease in the C-I and MSE of 0.05 and 0.03 was observed in all four sequences. The IN method impacted the predictive power of survival models; thus, performance is sequence-dependent.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36765922</pmid><doi>10.3390/cancers15030965</doi><orcidid>https://orcid.org/0000-0002-8016-5897</orcidid><orcidid>https://orcid.org/0000-0002-1915-745X</orcidid><orcidid>https://orcid.org/0000-0002-1474-1403</orcidid><orcidid>https://orcid.org/0000-0002-9037-3980</orcidid><orcidid>https://orcid.org/0000-0003-1873-235X</orcidid><orcidid>https://orcid.org/0000-0003-4978-9156</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2023-02, Vol.15 (3), p.965
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9913466
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects Algorithms
Biomarkers
Brain cancer
Datasets
Glioma
Gliomas
Magnetic resonance imaging
Medical prognosis
Methods
Patients
Predictions
Prognosis
Quality management
Radiation therapy
Radiomics
Regression analysis
Reproducibility
Scanners
Survival
Tumors
title MR Intensity Normalization Methods Impact Sequence Specific Radiomics Prognostic Model Performance in Primary and Recurrent High-Grade Glioma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A26%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MR%20Intensity%20Normalization%20Methods%20Impact%20Sequence%20Specific%20Radiomics%20Prognostic%20Model%20Performance%20in%20Primary%20and%20Recurrent%20High-Grade%20Glioma&rft.jtitle=Cancers&rft.au=Salome,%20Patrick&rft.date=2023-02-02&rft.volume=15&rft.issue=3&rft.spage=965&rft.pages=965-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers15030965&rft_dat=%3Cgale_pubme%3EA743010231%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774874412&rft_id=info:pmid/36765922&rft_galeid=A743010231&rfr_iscdi=true