Robust single-cell matching and multimodal analysis using shared and distinct features
The ability to align individual cellular information from multiple experimental sources is fundamental for a systems-level understanding of biological processes. However, currently available tools are mainly designed for single-cell transcriptomics matching and integration, and generally rely on a l...
Gespeichert in:
Veröffentlicht in: | Nature methods 2023-02, Vol.20 (2), p.304-315 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 315 |
---|---|
container_issue | 2 |
container_start_page | 304 |
container_title | Nature methods |
container_volume | 20 |
creator | Zhu, Bokai Chen, Shuxiao Bai, Yunhao Chen, Han Liao, Guanrui Mukherjee, Nilanjan Vazquez, Gustavo McIlwain, David R. Tzankov, Alexandar Lee, Ivan T. Matter, Matthias S. Goltsev, Yury Ma, Zongming Nolan, Garry P. Jiang, Sizun |
description | The ability to align individual cellular information from multiple experimental sources is fundamental for a systems-level understanding of biological processes. However, currently available tools are mainly designed for single-cell transcriptomics matching and integration, and generally rely on a large number of shared features across datasets for cell matching. This approach underperforms when applied to single-cell proteomic datasets due to the limited number of parameters simultaneously accessed and lack of shared markers across these experiments. Here, we introduce a cell-matching algorithm, matching with partial overlap (MARIO) that accounts for both shared and distinct features, while consisting of vital filtering steps to avoid suboptimal matching. MARIO accurately matches and integrates data from different single-cell proteomic and multimodal methods, including spatial techniques and has cross-species capabilities. MARIO robustly matched tissue macrophages identified from COVID-19 lung autopsies via codetection by indexing imaging to macrophages recovered from COVID-19 bronchoalveolar lavage fluid by cellular indexing of transcriptomes and epitopes by sequencing, revealing unique immune responses within the lung microenvironment of patients with COVID.
MARIO is a robust tool for accurately matching multimodal single-cell datasets. |
doi_str_mv | 10.1038/s41592-022-01709-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9911356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774729423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-b88b9d1dd06d243cf9a3ae9541a08f31956a7f7406954d6b78334e4ac8b773663</originalsourceid><addsrcrecordid>eNp9kctKxDAUhoMoXkZfwIUU3Lip5tam2QgyeIMBQdRtSJt0JtLLmJMKvr2pM14XBkJycr7zJyc_QocEnxLMijPgJJM0xTROIrBMxQbaJRkvUkFwtvm5x5LsoD2AZ4wZ4zTbRjsszymnhO6ip_u-HCAk4Lp5Y9PKNk3S6lAtYpzoziTt0ATX9kY3MdTNGzhIhpFOYKG9NR-QcRBcV4WktjoM3sI-2qp1A_ZgvU7Q49Xlw_Qmnd1d304vZmnFBQ9pWRSlNMQYnBvKWVVLzbSVGScaFzUjMsu1qAXHeTwzeSmK2IHluipKIWITbILOV7rLoWytqWwXvG7U0rtW-zfVa6d-Zzq3UPP-VUlJCMtGgZO1gO9fBgtBtQ7GX9Cd7QdQVOQsjpzJiB7_QZ_7wcc_GSnBBZWcskjRFVX5HsDb-usxBKvRNrWyTUXb1IdtSsSio59tfJV8-hQBtgIgprq59d93_yP7DjKYo90</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774729423</pqid></control><display><type>article</type><title>Robust single-cell matching and multimodal analysis using shared and distinct features</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Zhu, Bokai ; Chen, Shuxiao ; Bai, Yunhao ; Chen, Han ; Liao, Guanrui ; Mukherjee, Nilanjan ; Vazquez, Gustavo ; McIlwain, David R. ; Tzankov, Alexandar ; Lee, Ivan T. ; Matter, Matthias S. ; Goltsev, Yury ; Ma, Zongming ; Nolan, Garry P. ; Jiang, Sizun</creator><creatorcontrib>Zhu, Bokai ; Chen, Shuxiao ; Bai, Yunhao ; Chen, Han ; Liao, Guanrui ; Mukherjee, Nilanjan ; Vazquez, Gustavo ; McIlwain, David R. ; Tzankov, Alexandar ; Lee, Ivan T. ; Matter, Matthias S. ; Goltsev, Yury ; Ma, Zongming ; Nolan, Garry P. ; Jiang, Sizun</creatorcontrib><description>The ability to align individual cellular information from multiple experimental sources is fundamental for a systems-level understanding of biological processes. However, currently available tools are mainly designed for single-cell transcriptomics matching and integration, and generally rely on a large number of shared features across datasets for cell matching. This approach underperforms when applied to single-cell proteomic datasets due to the limited number of parameters simultaneously accessed and lack of shared markers across these experiments. Here, we introduce a cell-matching algorithm, matching with partial overlap (MARIO) that accounts for both shared and distinct features, while consisting of vital filtering steps to avoid suboptimal matching. MARIO accurately matches and integrates data from different single-cell proteomic and multimodal methods, including spatial techniques and has cross-species capabilities. MARIO robustly matched tissue macrophages identified from COVID-19 lung autopsies via codetection by indexing imaging to macrophages recovered from COVID-19 bronchoalveolar lavage fluid by cellular indexing of transcriptomes and epitopes by sequencing, revealing unique immune responses within the lung microenvironment of patients with COVID.
MARIO is a robust tool for accurately matching multimodal single-cell datasets.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-022-01709-7</identifier><identifier>PMID: 36624212</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/2401 ; 631/114/2415 ; 631/1647/2067 ; 631/553 ; Algorithms ; Autopsies ; Bioinformatics ; Biological activity ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Bronchus ; Coronaviruses ; COVID-19 ; Datasets ; Epitopes ; Gene Expression Profiling - methods ; Humans ; Immune response ; Indexing ; Lavage ; Life Sciences ; Lung ; Lungs ; Macrophages ; Matching ; Microenvironments ; Proteomics ; Proteomics - methods ; Robustness ; Single-Cell Analysis - methods ; Transcriptome ; Transcriptomes ; Transcriptomics</subject><ispartof>Nature methods, 2023-02, Vol.20 (2), p.304-315</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-b88b9d1dd06d243cf9a3ae9541a08f31956a7f7406954d6b78334e4ac8b773663</citedby><cites>FETCH-LOGICAL-c474t-b88b9d1dd06d243cf9a3ae9541a08f31956a7f7406954d6b78334e4ac8b773663</cites><orcidid>0000-0001-6149-3142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-022-01709-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-022-01709-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36624212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Bokai</creatorcontrib><creatorcontrib>Chen, Shuxiao</creatorcontrib><creatorcontrib>Bai, Yunhao</creatorcontrib><creatorcontrib>Chen, Han</creatorcontrib><creatorcontrib>Liao, Guanrui</creatorcontrib><creatorcontrib>Mukherjee, Nilanjan</creatorcontrib><creatorcontrib>Vazquez, Gustavo</creatorcontrib><creatorcontrib>McIlwain, David R.</creatorcontrib><creatorcontrib>Tzankov, Alexandar</creatorcontrib><creatorcontrib>Lee, Ivan T.</creatorcontrib><creatorcontrib>Matter, Matthias S.</creatorcontrib><creatorcontrib>Goltsev, Yury</creatorcontrib><creatorcontrib>Ma, Zongming</creatorcontrib><creatorcontrib>Nolan, Garry P.</creatorcontrib><creatorcontrib>Jiang, Sizun</creatorcontrib><title>Robust single-cell matching and multimodal analysis using shared and distinct features</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>The ability to align individual cellular information from multiple experimental sources is fundamental for a systems-level understanding of biological processes. However, currently available tools are mainly designed for single-cell transcriptomics matching and integration, and generally rely on a large number of shared features across datasets for cell matching. This approach underperforms when applied to single-cell proteomic datasets due to the limited number of parameters simultaneously accessed and lack of shared markers across these experiments. Here, we introduce a cell-matching algorithm, matching with partial overlap (MARIO) that accounts for both shared and distinct features, while consisting of vital filtering steps to avoid suboptimal matching. MARIO accurately matches and integrates data from different single-cell proteomic and multimodal methods, including spatial techniques and has cross-species capabilities. MARIO robustly matched tissue macrophages identified from COVID-19 lung autopsies via codetection by indexing imaging to macrophages recovered from COVID-19 bronchoalveolar lavage fluid by cellular indexing of transcriptomes and epitopes by sequencing, revealing unique immune responses within the lung microenvironment of patients with COVID.
MARIO is a robust tool for accurately matching multimodal single-cell datasets.</description><subject>631/114/2401</subject><subject>631/114/2415</subject><subject>631/1647/2067</subject><subject>631/553</subject><subject>Algorithms</subject><subject>Autopsies</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Bronchus</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Datasets</subject><subject>Epitopes</subject><subject>Gene Expression Profiling - methods</subject><subject>Humans</subject><subject>Immune response</subject><subject>Indexing</subject><subject>Lavage</subject><subject>Life Sciences</subject><subject>Lung</subject><subject>Lungs</subject><subject>Macrophages</subject><subject>Matching</subject><subject>Microenvironments</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Robustness</subject><subject>Single-Cell Analysis - methods</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><subject>Transcriptomics</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctKxDAUhoMoXkZfwIUU3Lip5tam2QgyeIMBQdRtSJt0JtLLmJMKvr2pM14XBkJycr7zJyc_QocEnxLMijPgJJM0xTROIrBMxQbaJRkvUkFwtvm5x5LsoD2AZ4wZ4zTbRjsszymnhO6ip_u-HCAk4Lp5Y9PKNk3S6lAtYpzoziTt0ATX9kY3MdTNGzhIhpFOYKG9NR-QcRBcV4WktjoM3sI-2qp1A_ZgvU7Q49Xlw_Qmnd1d304vZmnFBQ9pWRSlNMQYnBvKWVVLzbSVGScaFzUjMsu1qAXHeTwzeSmK2IHluipKIWITbILOV7rLoWytqWwXvG7U0rtW-zfVa6d-Zzq3UPP-VUlJCMtGgZO1gO9fBgtBtQ7GX9Cd7QdQVOQsjpzJiB7_QZ_7wcc_GSnBBZWcskjRFVX5HsDb-usxBKvRNrWyTUXb1IdtSsSio59tfJV8-hQBtgIgprq59d93_yP7DjKYo90</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zhu, Bokai</creator><creator>Chen, Shuxiao</creator><creator>Bai, Yunhao</creator><creator>Chen, Han</creator><creator>Liao, Guanrui</creator><creator>Mukherjee, Nilanjan</creator><creator>Vazquez, Gustavo</creator><creator>McIlwain, David R.</creator><creator>Tzankov, Alexandar</creator><creator>Lee, Ivan T.</creator><creator>Matter, Matthias S.</creator><creator>Goltsev, Yury</creator><creator>Ma, Zongming</creator><creator>Nolan, Garry P.</creator><creator>Jiang, Sizun</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6149-3142</orcidid></search><sort><creationdate>20230201</creationdate><title>Robust single-cell matching and multimodal analysis using shared and distinct features</title><author>Zhu, Bokai ; Chen, Shuxiao ; Bai, Yunhao ; Chen, Han ; Liao, Guanrui ; Mukherjee, Nilanjan ; Vazquez, Gustavo ; McIlwain, David R. ; Tzankov, Alexandar ; Lee, Ivan T. ; Matter, Matthias S. ; Goltsev, Yury ; Ma, Zongming ; Nolan, Garry P. ; Jiang, Sizun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-b88b9d1dd06d243cf9a3ae9541a08f31956a7f7406954d6b78334e4ac8b773663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/114/2401</topic><topic>631/114/2415</topic><topic>631/1647/2067</topic><topic>631/553</topic><topic>Algorithms</topic><topic>Autopsies</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Bronchus</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Datasets</topic><topic>Epitopes</topic><topic>Gene Expression Profiling - methods</topic><topic>Humans</topic><topic>Immune response</topic><topic>Indexing</topic><topic>Lavage</topic><topic>Life Sciences</topic><topic>Lung</topic><topic>Lungs</topic><topic>Macrophages</topic><topic>Matching</topic><topic>Microenvironments</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Robustness</topic><topic>Single-Cell Analysis - methods</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Bokai</creatorcontrib><creatorcontrib>Chen, Shuxiao</creatorcontrib><creatorcontrib>Bai, Yunhao</creatorcontrib><creatorcontrib>Chen, Han</creatorcontrib><creatorcontrib>Liao, Guanrui</creatorcontrib><creatorcontrib>Mukherjee, Nilanjan</creatorcontrib><creatorcontrib>Vazquez, Gustavo</creatorcontrib><creatorcontrib>McIlwain, David R.</creatorcontrib><creatorcontrib>Tzankov, Alexandar</creatorcontrib><creatorcontrib>Lee, Ivan T.</creatorcontrib><creatorcontrib>Matter, Matthias S.</creatorcontrib><creatorcontrib>Goltsev, Yury</creatorcontrib><creatorcontrib>Ma, Zongming</creatorcontrib><creatorcontrib>Nolan, Garry P.</creatorcontrib><creatorcontrib>Jiang, Sizun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Bokai</au><au>Chen, Shuxiao</au><au>Bai, Yunhao</au><au>Chen, Han</au><au>Liao, Guanrui</au><au>Mukherjee, Nilanjan</au><au>Vazquez, Gustavo</au><au>McIlwain, David R.</au><au>Tzankov, Alexandar</au><au>Lee, Ivan T.</au><au>Matter, Matthias S.</au><au>Goltsev, Yury</au><au>Ma, Zongming</au><au>Nolan, Garry P.</au><au>Jiang, Sizun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust single-cell matching and multimodal analysis using shared and distinct features</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>20</volume><issue>2</issue><spage>304</spage><epage>315</epage><pages>304-315</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>The ability to align individual cellular information from multiple experimental sources is fundamental for a systems-level understanding of biological processes. However, currently available tools are mainly designed for single-cell transcriptomics matching and integration, and generally rely on a large number of shared features across datasets for cell matching. This approach underperforms when applied to single-cell proteomic datasets due to the limited number of parameters simultaneously accessed and lack of shared markers across these experiments. Here, we introduce a cell-matching algorithm, matching with partial overlap (MARIO) that accounts for both shared and distinct features, while consisting of vital filtering steps to avoid suboptimal matching. MARIO accurately matches and integrates data from different single-cell proteomic and multimodal methods, including spatial techniques and has cross-species capabilities. MARIO robustly matched tissue macrophages identified from COVID-19 lung autopsies via codetection by indexing imaging to macrophages recovered from COVID-19 bronchoalveolar lavage fluid by cellular indexing of transcriptomes and epitopes by sequencing, revealing unique immune responses within the lung microenvironment of patients with COVID.
MARIO is a robust tool for accurately matching multimodal single-cell datasets.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>36624212</pmid><doi>10.1038/s41592-022-01709-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6149-3142</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2023-02, Vol.20 (2), p.304-315 |
issn | 1548-7091 1548-7105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9911356 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/114/2401 631/114/2415 631/1647/2067 631/553 Algorithms Autopsies Bioinformatics Biological activity Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Bronchus Coronaviruses COVID-19 Datasets Epitopes Gene Expression Profiling - methods Humans Immune response Indexing Lavage Life Sciences Lung Lungs Macrophages Matching Microenvironments Proteomics Proteomics - methods Robustness Single-Cell Analysis - methods Transcriptome Transcriptomes Transcriptomics |
title | Robust single-cell matching and multimodal analysis using shared and distinct features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20single-cell%20matching%20and%20multimodal%20analysis%20using%20shared%20and%20distinct%20features&rft.jtitle=Nature%20methods&rft.au=Zhu,%20Bokai&rft.date=2023-02-01&rft.volume=20&rft.issue=2&rft.spage=304&rft.epage=315&rft.pages=304-315&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-022-01709-7&rft_dat=%3Cproquest_pubme%3E2774729423%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774729423&rft_id=info:pmid/36624212&rfr_iscdi=true |