Hypomorphic and dominant-negative impact of truncated SOX9 dysregulates Hedgehog-Wnt signaling, causing campomelia

Haploinsufficiency for SOX9, the master chondrogenesis transcription factor, can underlie campomelic dysplasia (CD), an autosomal dominant skeletal malformation syndrome, because heterozygous null mice recapitulate the bent limb (campomelia) and some other phenotypes associated with CD. However, in ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2023-01, Vol.120 (1), p.e2208623119-e2208623119
Hauptverfasser: Au, Tiffany Y K, Yip, Raymond K H, Wynn, Sarah L, Tan, Tiong Y, Fu, Alex, Geng, Yu Hong, Szeto, Irene Y Y, Niu, Ben, Yip, Kevin Y, Cheung, Martin C H, Lovell-Badge, Robin, Cheah, Kathryn S E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2208623119
container_issue 1
container_start_page e2208623119
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Au, Tiffany Y K
Yip, Raymond K H
Wynn, Sarah L
Tan, Tiong Y
Fu, Alex
Geng, Yu Hong
Szeto, Irene Y Y
Niu, Ben
Yip, Kevin Y
Cheung, Martin C H
Lovell-Badge, Robin
Cheah, Kathryn S E
description Haploinsufficiency for SOX9, the master chondrogenesis transcription factor, can underlie campomelic dysplasia (CD), an autosomal dominant skeletal malformation syndrome, because heterozygous null mice recapitulate the bent limb (campomelia) and some other phenotypes associated with CD. However, in vitro cell assays suggest haploinsufficiency may not apply for certain mutations, notably those that truncate the protein, but in these cases in vivo evidence is lacking and underlying mechanisms are unknown. Here, using conditional mouse mutants, we compared the impact of a heterozygous null mutation ( ) with the CD mutation that truncates the C-terminal transactivation domain but spares the DNA-binding domain. While some mice survived, all mice died perinatally. However, the skeletal defects were more severe and IHH signaling in developing limb cartilage was significantly enhanced in compared with . Activating specifically in the chondrocyte-osteoblast lineage caused milder campomelia, and revealed cell- and noncell autonomous mechanisms acting on chondrocyte differentiation and osteogenesis in the perichondrium. Transcriptome analyses of developing limbs revealed dysregulated expression of genes for the extracellular matrix, as well as changes consistent with aberrant WNT and HH signaling. SOX9 failed to interact with β-catenin and was unable to suppress transactivation of in cell-based assays We propose enhanced HH signaling in the adjacent perichondrium induces asymmetrically localized excessive perichondrial osteogenesis resulting in campomelia. Our study implicates combined haploinsufficiency/hypomorphic and dominant-negative actions of SOX9 , cell-autonomous and noncell autonomous mechanisms, and dysregulated WNT and HH signaling, as the cause of human campomelia.
doi_str_mv 10.1073/pnas.2208623119
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9910594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759960441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-92da041fb53ac7f4643e915fd96be77cd74f4bf0e9dca89f8bfecf09f5d20a4d3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EotvCmRuyxIVD044dx4kvSKgCFqlSD7SCm-X4I-sqsYOdVNr_Hq9aCu1pRvbPbzzvIfSOwBmBtj6fg8pnlELHaU2IeIE2BASpOBPwEm0AaFt1jLIjdJzzLQCIpoPX6KjmTcdqgA1K2_0cp5jmnddYBYNNnHxQYamCHdTi7yz206z0gqPDS1qDVos1-MfVL4HNPic7rGM5yXhrzWB3cah-hgVnPwQ1-jCcYq3WXJpSpzLIjl69Qa-cGrN9-1BP0M3XL9cX2-ry6tv3i8-XlWaULJWgRgEjrm9qpVvHOKutII0zgve2bbVpmWO9AyuMVp1wXe-sdiBcYygoZuoT9Oled177yRptw5LUKOfkJ5X2Miovn94Ev5NDvJNCEGgEKwIfHwRS_L3avMjJZ23HUQUb1yxp2wjBgTFS0A_P0Nu4puLBgeIUCOf0IHh-T-kUc_HOPX6GgDzkKQ95yn95lhfv_9_hkf8bYP0HZ_Sfvw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762016624</pqid></control><display><type>article</type><title>Hypomorphic and dominant-negative impact of truncated SOX9 dysregulates Hedgehog-Wnt signaling, causing campomelia</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Au, Tiffany Y K ; Yip, Raymond K H ; Wynn, Sarah L ; Tan, Tiong Y ; Fu, Alex ; Geng, Yu Hong ; Szeto, Irene Y Y ; Niu, Ben ; Yip, Kevin Y ; Cheung, Martin C H ; Lovell-Badge, Robin ; Cheah, Kathryn S E</creator><creatorcontrib>Au, Tiffany Y K ; Yip, Raymond K H ; Wynn, Sarah L ; Tan, Tiong Y ; Fu, Alex ; Geng, Yu Hong ; Szeto, Irene Y Y ; Niu, Ben ; Yip, Kevin Y ; Cheung, Martin C H ; Lovell-Badge, Robin ; Cheah, Kathryn S E</creatorcontrib><description>Haploinsufficiency for SOX9, the master chondrogenesis transcription factor, can underlie campomelic dysplasia (CD), an autosomal dominant skeletal malformation syndrome, because heterozygous null mice recapitulate the bent limb (campomelia) and some other phenotypes associated with CD. However, in vitro cell assays suggest haploinsufficiency may not apply for certain mutations, notably those that truncate the protein, but in these cases in vivo evidence is lacking and underlying mechanisms are unknown. Here, using conditional mouse mutants, we compared the impact of a heterozygous null mutation ( ) with the CD mutation that truncates the C-terminal transactivation domain but spares the DNA-binding domain. While some mice survived, all mice died perinatally. However, the skeletal defects were more severe and IHH signaling in developing limb cartilage was significantly enhanced in compared with . Activating specifically in the chondrocyte-osteoblast lineage caused milder campomelia, and revealed cell- and noncell autonomous mechanisms acting on chondrocyte differentiation and osteogenesis in the perichondrium. Transcriptome analyses of developing limbs revealed dysregulated expression of genes for the extracellular matrix, as well as changes consistent with aberrant WNT and HH signaling. SOX9 failed to interact with β-catenin and was unable to suppress transactivation of in cell-based assays We propose enhanced HH signaling in the adjacent perichondrium induces asymmetrically localized excessive perichondrial osteogenesis resulting in campomelia. Our study implicates combined haploinsufficiency/hypomorphic and dominant-negative actions of SOX9 , cell-autonomous and noncell autonomous mechanisms, and dysregulated WNT and HH signaling, as the cause of human campomelia.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2208623119</identifier><identifier>PMID: 36584300</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cartilage ; Cell Differentiation - genetics ; Chondrocytes ; Chondrocytes - metabolism ; Chondrogenesis ; Dysplasia ; Extracellular matrix ; Gene expression ; Gene Expression Regulation ; Haploinsufficiency ; Hedgehog protein ; Hedgehogs - metabolism ; Humans ; Kinases ; Mice ; Mutation ; Osteogenesis ; Perichondrium ; Phenotypes ; Proteins - metabolism ; Signaling ; Sox9 protein ; SOX9 Transcription Factor - genetics ; SOX9 Transcription Factor - metabolism ; Transcriptomes ; Wnt protein ; Wnt Signaling Pathway ; β-Catenin</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-01, Vol.120 (1), p.e2208623119-e2208623119</ispartof><rights>Copyright National Academy of Sciences Jan 3, 2023</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-92da041fb53ac7f4643e915fd96be77cd74f4bf0e9dca89f8bfecf09f5d20a4d3</citedby><cites>FETCH-LOGICAL-c421t-92da041fb53ac7f4643e915fd96be77cd74f4bf0e9dca89f8bfecf09f5d20a4d3</cites><orcidid>0000-0003-2698-7686 ; 0000-0002-0712-0641 ; 0000-0002-3925-1136 ; 0000-0001-9364-4179 ; 0000-0003-0802-8799 ; 0000-0002-3471-8534 ; 0000-0001-5516-9944 ; 0000-0001-6531-8181 ; 0000-0001-9835-5018 ; 0000-0002-4131-1951 ; 0000-0001-8455-7778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910594/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910594/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36584300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Au, Tiffany Y K</creatorcontrib><creatorcontrib>Yip, Raymond K H</creatorcontrib><creatorcontrib>Wynn, Sarah L</creatorcontrib><creatorcontrib>Tan, Tiong Y</creatorcontrib><creatorcontrib>Fu, Alex</creatorcontrib><creatorcontrib>Geng, Yu Hong</creatorcontrib><creatorcontrib>Szeto, Irene Y Y</creatorcontrib><creatorcontrib>Niu, Ben</creatorcontrib><creatorcontrib>Yip, Kevin Y</creatorcontrib><creatorcontrib>Cheung, Martin C H</creatorcontrib><creatorcontrib>Lovell-Badge, Robin</creatorcontrib><creatorcontrib>Cheah, Kathryn S E</creatorcontrib><title>Hypomorphic and dominant-negative impact of truncated SOX9 dysregulates Hedgehog-Wnt signaling, causing campomelia</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Haploinsufficiency for SOX9, the master chondrogenesis transcription factor, can underlie campomelic dysplasia (CD), an autosomal dominant skeletal malformation syndrome, because heterozygous null mice recapitulate the bent limb (campomelia) and some other phenotypes associated with CD. However, in vitro cell assays suggest haploinsufficiency may not apply for certain mutations, notably those that truncate the protein, but in these cases in vivo evidence is lacking and underlying mechanisms are unknown. Here, using conditional mouse mutants, we compared the impact of a heterozygous null mutation ( ) with the CD mutation that truncates the C-terminal transactivation domain but spares the DNA-binding domain. While some mice survived, all mice died perinatally. However, the skeletal defects were more severe and IHH signaling in developing limb cartilage was significantly enhanced in compared with . Activating specifically in the chondrocyte-osteoblast lineage caused milder campomelia, and revealed cell- and noncell autonomous mechanisms acting on chondrocyte differentiation and osteogenesis in the perichondrium. Transcriptome analyses of developing limbs revealed dysregulated expression of genes for the extracellular matrix, as well as changes consistent with aberrant WNT and HH signaling. SOX9 failed to interact with β-catenin and was unable to suppress transactivation of in cell-based assays We propose enhanced HH signaling in the adjacent perichondrium induces asymmetrically localized excessive perichondrial osteogenesis resulting in campomelia. Our study implicates combined haploinsufficiency/hypomorphic and dominant-negative actions of SOX9 , cell-autonomous and noncell autonomous mechanisms, and dysregulated WNT and HH signaling, as the cause of human campomelia.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cartilage</subject><subject>Cell Differentiation - genetics</subject><subject>Chondrocytes</subject><subject>Chondrocytes - metabolism</subject><subject>Chondrogenesis</subject><subject>Dysplasia</subject><subject>Extracellular matrix</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Haploinsufficiency</subject><subject>Hedgehog protein</subject><subject>Hedgehogs - metabolism</subject><subject>Humans</subject><subject>Kinases</subject><subject>Mice</subject><subject>Mutation</subject><subject>Osteogenesis</subject><subject>Perichondrium</subject><subject>Phenotypes</subject><subject>Proteins - metabolism</subject><subject>Signaling</subject><subject>Sox9 protein</subject><subject>SOX9 Transcription Factor - genetics</subject><subject>SOX9 Transcription Factor - metabolism</subject><subject>Transcriptomes</subject><subject>Wnt protein</subject><subject>Wnt Signaling Pathway</subject><subject>β-Catenin</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EotvCmRuyxIVD044dx4kvSKgCFqlSD7SCm-X4I-sqsYOdVNr_Hq9aCu1pRvbPbzzvIfSOwBmBtj6fg8pnlELHaU2IeIE2BASpOBPwEm0AaFt1jLIjdJzzLQCIpoPX6KjmTcdqgA1K2_0cp5jmnddYBYNNnHxQYamCHdTi7yz206z0gqPDS1qDVos1-MfVL4HNPic7rGM5yXhrzWB3cah-hgVnPwQ1-jCcYq3WXJpSpzLIjl69Qa-cGrN9-1BP0M3XL9cX2-ry6tv3i8-XlWaULJWgRgEjrm9qpVvHOKutII0zgve2bbVpmWO9AyuMVp1wXe-sdiBcYygoZuoT9Oled177yRptw5LUKOfkJ5X2Miovn94Ev5NDvJNCEGgEKwIfHwRS_L3avMjJZ23HUQUb1yxp2wjBgTFS0A_P0Nu4puLBgeIUCOf0IHh-T-kUc_HOPX6GgDzkKQ95yn95lhfv_9_hkf8bYP0HZ_Sfvw</recordid><startdate>20230103</startdate><enddate>20230103</enddate><creator>Au, Tiffany Y K</creator><creator>Yip, Raymond K H</creator><creator>Wynn, Sarah L</creator><creator>Tan, Tiong Y</creator><creator>Fu, Alex</creator><creator>Geng, Yu Hong</creator><creator>Szeto, Irene Y Y</creator><creator>Niu, Ben</creator><creator>Yip, Kevin Y</creator><creator>Cheung, Martin C H</creator><creator>Lovell-Badge, Robin</creator><creator>Cheah, Kathryn S E</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2698-7686</orcidid><orcidid>https://orcid.org/0000-0002-0712-0641</orcidid><orcidid>https://orcid.org/0000-0002-3925-1136</orcidid><orcidid>https://orcid.org/0000-0001-9364-4179</orcidid><orcidid>https://orcid.org/0000-0003-0802-8799</orcidid><orcidid>https://orcid.org/0000-0002-3471-8534</orcidid><orcidid>https://orcid.org/0000-0001-5516-9944</orcidid><orcidid>https://orcid.org/0000-0001-6531-8181</orcidid><orcidid>https://orcid.org/0000-0001-9835-5018</orcidid><orcidid>https://orcid.org/0000-0002-4131-1951</orcidid><orcidid>https://orcid.org/0000-0001-8455-7778</orcidid></search><sort><creationdate>20230103</creationdate><title>Hypomorphic and dominant-negative impact of truncated SOX9 dysregulates Hedgehog-Wnt signaling, causing campomelia</title><author>Au, Tiffany Y K ; Yip, Raymond K H ; Wynn, Sarah L ; Tan, Tiong Y ; Fu, Alex ; Geng, Yu Hong ; Szeto, Irene Y Y ; Niu, Ben ; Yip, Kevin Y ; Cheung, Martin C H ; Lovell-Badge, Robin ; Cheah, Kathryn S E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-92da041fb53ac7f4643e915fd96be77cd74f4bf0e9dca89f8bfecf09f5d20a4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cartilage</topic><topic>Cell Differentiation - genetics</topic><topic>Chondrocytes</topic><topic>Chondrocytes - metabolism</topic><topic>Chondrogenesis</topic><topic>Dysplasia</topic><topic>Extracellular matrix</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Haploinsufficiency</topic><topic>Hedgehog protein</topic><topic>Hedgehogs - metabolism</topic><topic>Humans</topic><topic>Kinases</topic><topic>Mice</topic><topic>Mutation</topic><topic>Osteogenesis</topic><topic>Perichondrium</topic><topic>Phenotypes</topic><topic>Proteins - metabolism</topic><topic>Signaling</topic><topic>Sox9 protein</topic><topic>SOX9 Transcription Factor - genetics</topic><topic>SOX9 Transcription Factor - metabolism</topic><topic>Transcriptomes</topic><topic>Wnt protein</topic><topic>Wnt Signaling Pathway</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Au, Tiffany Y K</creatorcontrib><creatorcontrib>Yip, Raymond K H</creatorcontrib><creatorcontrib>Wynn, Sarah L</creatorcontrib><creatorcontrib>Tan, Tiong Y</creatorcontrib><creatorcontrib>Fu, Alex</creatorcontrib><creatorcontrib>Geng, Yu Hong</creatorcontrib><creatorcontrib>Szeto, Irene Y Y</creatorcontrib><creatorcontrib>Niu, Ben</creatorcontrib><creatorcontrib>Yip, Kevin Y</creatorcontrib><creatorcontrib>Cheung, Martin C H</creatorcontrib><creatorcontrib>Lovell-Badge, Robin</creatorcontrib><creatorcontrib>Cheah, Kathryn S E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Au, Tiffany Y K</au><au>Yip, Raymond K H</au><au>Wynn, Sarah L</au><au>Tan, Tiong Y</au><au>Fu, Alex</au><au>Geng, Yu Hong</au><au>Szeto, Irene Y Y</au><au>Niu, Ben</au><au>Yip, Kevin Y</au><au>Cheung, Martin C H</au><au>Lovell-Badge, Robin</au><au>Cheah, Kathryn S E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypomorphic and dominant-negative impact of truncated SOX9 dysregulates Hedgehog-Wnt signaling, causing campomelia</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-01-03</date><risdate>2023</risdate><volume>120</volume><issue>1</issue><spage>e2208623119</spage><epage>e2208623119</epage><pages>e2208623119-e2208623119</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Haploinsufficiency for SOX9, the master chondrogenesis transcription factor, can underlie campomelic dysplasia (CD), an autosomal dominant skeletal malformation syndrome, because heterozygous null mice recapitulate the bent limb (campomelia) and some other phenotypes associated with CD. However, in vitro cell assays suggest haploinsufficiency may not apply for certain mutations, notably those that truncate the protein, but in these cases in vivo evidence is lacking and underlying mechanisms are unknown. Here, using conditional mouse mutants, we compared the impact of a heterozygous null mutation ( ) with the CD mutation that truncates the C-terminal transactivation domain but spares the DNA-binding domain. While some mice survived, all mice died perinatally. However, the skeletal defects were more severe and IHH signaling in developing limb cartilage was significantly enhanced in compared with . Activating specifically in the chondrocyte-osteoblast lineage caused milder campomelia, and revealed cell- and noncell autonomous mechanisms acting on chondrocyte differentiation and osteogenesis in the perichondrium. Transcriptome analyses of developing limbs revealed dysregulated expression of genes for the extracellular matrix, as well as changes consistent with aberrant WNT and HH signaling. SOX9 failed to interact with β-catenin and was unable to suppress transactivation of in cell-based assays We propose enhanced HH signaling in the adjacent perichondrium induces asymmetrically localized excessive perichondrial osteogenesis resulting in campomelia. Our study implicates combined haploinsufficiency/hypomorphic and dominant-negative actions of SOX9 , cell-autonomous and noncell autonomous mechanisms, and dysregulated WNT and HH signaling, as the cause of human campomelia.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36584300</pmid><doi>10.1073/pnas.2208623119</doi><orcidid>https://orcid.org/0000-0003-2698-7686</orcidid><orcidid>https://orcid.org/0000-0002-0712-0641</orcidid><orcidid>https://orcid.org/0000-0002-3925-1136</orcidid><orcidid>https://orcid.org/0000-0001-9364-4179</orcidid><orcidid>https://orcid.org/0000-0003-0802-8799</orcidid><orcidid>https://orcid.org/0000-0002-3471-8534</orcidid><orcidid>https://orcid.org/0000-0001-5516-9944</orcidid><orcidid>https://orcid.org/0000-0001-6531-8181</orcidid><orcidid>https://orcid.org/0000-0001-9835-5018</orcidid><orcidid>https://orcid.org/0000-0002-4131-1951</orcidid><orcidid>https://orcid.org/0000-0001-8455-7778</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-01, Vol.120 (1), p.e2208623119-e2208623119
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9910594
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Cartilage
Cell Differentiation - genetics
Chondrocytes
Chondrocytes - metabolism
Chondrogenesis
Dysplasia
Extracellular matrix
Gene expression
Gene Expression Regulation
Haploinsufficiency
Hedgehog protein
Hedgehogs - metabolism
Humans
Kinases
Mice
Mutation
Osteogenesis
Perichondrium
Phenotypes
Proteins - metabolism
Signaling
Sox9 protein
SOX9 Transcription Factor - genetics
SOX9 Transcription Factor - metabolism
Transcriptomes
Wnt protein
Wnt Signaling Pathway
β-Catenin
title Hypomorphic and dominant-negative impact of truncated SOX9 dysregulates Hedgehog-Wnt signaling, causing campomelia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A46%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypomorphic%20and%20dominant-negative%20impact%20of%20truncated%20SOX9%20dysregulates%20Hedgehog-Wnt%20signaling,%20causing%20campomelia&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Au,%20Tiffany%20Y%20K&rft.date=2023-01-03&rft.volume=120&rft.issue=1&rft.spage=e2208623119&rft.epage=e2208623119&rft.pages=e2208623119-e2208623119&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2208623119&rft_dat=%3Cproquest_pubme%3E2759960441%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762016624&rft_id=info:pmid/36584300&rfr_iscdi=true