Interplay of the mechanical and structural properties of DNA nanostructures determines their electrostatic interactions with lipid membranes

Nucleic acids and lipids function in close proximity in biological processes, as well as in nanoengineered constructs for therapeutic applications. As both molecules carry a rich charge profile, and frequently coexist in complex ionic solutions, the electrostatics surely play a pivotal role in inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2023-02, Vol.15 (6), p.2849-2859
Hauptverfasser: Morzy, Diana, Tekin, Cem, Caroprese, Vincenzo, Rubio-Sánchez, Roger, Di Michele, Lorenzo, Bastings, Maartje M. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2859
container_issue 6
container_start_page 2849
container_title Nanoscale
container_volume 15
creator Morzy, Diana
Tekin, Cem
Caroprese, Vincenzo
Rubio-Sánchez, Roger
Di Michele, Lorenzo
Bastings, Maartje M. C
description Nucleic acids and lipids function in close proximity in biological processes, as well as in nanoengineered constructs for therapeutic applications. As both molecules carry a rich charge profile, and frequently coexist in complex ionic solutions, the electrostatics surely play a pivotal role in interactions between them. Here we discuss how each component of a DNA/ion/lipid system determines its electrostatic attachment. We examine membrane binding of a library of DNA molecules varying from nanoengineered DNA origami through plasmids to short DNA domains, demonstrating the interplay between the molecular structure of the nucleic acid and the phase of lipid bilayers. Furthermore, the magnitude of DNA/lipid interactions is tuned by varying the concentration of magnesium ions in the physiologically relevant range. Notably, we observe that the structural and mechanical properties of DNA are critical in determining its attachment to lipid bilayers and demonstrate that binding is correlated positively with the size, and negatively with the flexibility of the nucleic acid. The findings are utilized in a proof-of-concept comparison of membrane interactions of two DNA origami designs - potential nanotherapeutic platforms - showing how the results can have a direct impact on the choice of DNA geometry for biotechnological applications. Nucleic acids and lipids function in close proximity in biological processes, as well as in nanoengineered constructs for therapeutic applications.
doi_str_mv 10.1039/d2nr05368c
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9909679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774421862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-17cf9661bc1910d474f1ec0b8dbb5c2787e7fef33e32a30733078b5475d6a9383</originalsourceid><addsrcrecordid>eNpdkltrFDEUx4Motl198V0J-FKE1VxmcnkplK2XQqkg-hwymYybMpOMSUbpd_BDe9Zt18tDyEnOL_9zC0LPKHlNCddvehYzablQ7gE6ZqQha84le3iwRXOETkq5IURoLvhjdMSFUEpqdox-Xsbq8zzaW5wGXLceT95tbQzOjtjGHpeaF1eXDMc5p9nnGnzZsRfX5zjamO4BuO09aE0hgglKIWM_elczILYGh8MulHU1pFjwj1C3eAxz6CHi1GULr56gR4Mdi396t6_Ql3dvP28-rK8-vr_cnF-tHW9VXVPpBi0E7RzVlPSNbAbqHelU33WtY1JJLwc_cO45s5xIDkt1bSPbXljNFV-hs73uvHST752PFeozcw6Tzbcm2WD-9cSwNV_Td6M10UJqEDi9E8jp2-JLNVMozo8jVJGWYpiE_lKqIfQKvfwPvUlLjlAeULJpGFWCAfVqTznoVsl-OCRDidkN2Vyw60-_h7wB-MXf6R_Q-6kC8HwP5OIO3j-_hP8CoGiwZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774421862</pqid></control><display><type>article</type><title>Interplay of the mechanical and structural properties of DNA nanostructures determines their electrostatic interactions with lipid membranes</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Morzy, Diana ; Tekin, Cem ; Caroprese, Vincenzo ; Rubio-Sánchez, Roger ; Di Michele, Lorenzo ; Bastings, Maartje M. C</creator><creatorcontrib>Morzy, Diana ; Tekin, Cem ; Caroprese, Vincenzo ; Rubio-Sánchez, Roger ; Di Michele, Lorenzo ; Bastings, Maartje M. C</creatorcontrib><description>Nucleic acids and lipids function in close proximity in biological processes, as well as in nanoengineered constructs for therapeutic applications. As both molecules carry a rich charge profile, and frequently coexist in complex ionic solutions, the electrostatics surely play a pivotal role in interactions between them. Here we discuss how each component of a DNA/ion/lipid system determines its electrostatic attachment. We examine membrane binding of a library of DNA molecules varying from nanoengineered DNA origami through plasmids to short DNA domains, demonstrating the interplay between the molecular structure of the nucleic acid and the phase of lipid bilayers. Furthermore, the magnitude of DNA/lipid interactions is tuned by varying the concentration of magnesium ions in the physiologically relevant range. Notably, we observe that the structural and mechanical properties of DNA are critical in determining its attachment to lipid bilayers and demonstrate that binding is correlated positively with the size, and negatively with the flexibility of the nucleic acid. The findings are utilized in a proof-of-concept comparison of membrane interactions of two DNA origami designs - potential nanotherapeutic platforms - showing how the results can have a direct impact on the choice of DNA geometry for biotechnological applications. Nucleic acids and lipids function in close proximity in biological processes, as well as in nanoengineered constructs for therapeutic applications.</description><identifier>ISSN: 2040-3364</identifier><identifier>ISSN: 2040-3372</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d2nr05368c</identifier><identifier>PMID: 36688792</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Binding ; Biological activity ; Chemistry ; Current carriers ; DNA - chemistry ; Electrostatics ; Ions ; Lipid Bilayers - chemistry ; Lipids ; Magnesium ; Mechanical properties ; Membranes ; Molecular structure ; Nanostructures - chemistry ; Nucleic acids ; Static Electricity</subject><ispartof>Nanoscale, 2023-02, Vol.15 (6), p.2849-2859</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><rights>This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-17cf9661bc1910d474f1ec0b8dbb5c2787e7fef33e32a30733078b5475d6a9383</citedby><cites>FETCH-LOGICAL-c358t-17cf9661bc1910d474f1ec0b8dbb5c2787e7fef33e32a30733078b5475d6a9383</cites><orcidid>0000-0001-8818-4286 ; 0000-0002-7603-4018 ; 0000-0002-1458-9747 ; 0000-0001-5909-2876 ; 0000-0002-6814-8277 ; 0000-0001-5574-5809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36688792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morzy, Diana</creatorcontrib><creatorcontrib>Tekin, Cem</creatorcontrib><creatorcontrib>Caroprese, Vincenzo</creatorcontrib><creatorcontrib>Rubio-Sánchez, Roger</creatorcontrib><creatorcontrib>Di Michele, Lorenzo</creatorcontrib><creatorcontrib>Bastings, Maartje M. C</creatorcontrib><title>Interplay of the mechanical and structural properties of DNA nanostructures determines their electrostatic interactions with lipid membranes</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Nucleic acids and lipids function in close proximity in biological processes, as well as in nanoengineered constructs for therapeutic applications. As both molecules carry a rich charge profile, and frequently coexist in complex ionic solutions, the electrostatics surely play a pivotal role in interactions between them. Here we discuss how each component of a DNA/ion/lipid system determines its electrostatic attachment. We examine membrane binding of a library of DNA molecules varying from nanoengineered DNA origami through plasmids to short DNA domains, demonstrating the interplay between the molecular structure of the nucleic acid and the phase of lipid bilayers. Furthermore, the magnitude of DNA/lipid interactions is tuned by varying the concentration of magnesium ions in the physiologically relevant range. Notably, we observe that the structural and mechanical properties of DNA are critical in determining its attachment to lipid bilayers and demonstrate that binding is correlated positively with the size, and negatively with the flexibility of the nucleic acid. The findings are utilized in a proof-of-concept comparison of membrane interactions of two DNA origami designs - potential nanotherapeutic platforms - showing how the results can have a direct impact on the choice of DNA geometry for biotechnological applications. Nucleic acids and lipids function in close proximity in biological processes, as well as in nanoengineered constructs for therapeutic applications.</description><subject>Binding</subject><subject>Biological activity</subject><subject>Chemistry</subject><subject>Current carriers</subject><subject>DNA - chemistry</subject><subject>Electrostatics</subject><subject>Ions</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Magnesium</subject><subject>Mechanical properties</subject><subject>Membranes</subject><subject>Molecular structure</subject><subject>Nanostructures - chemistry</subject><subject>Nucleic acids</subject><subject>Static Electricity</subject><issn>2040-3364</issn><issn>2040-3372</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkltrFDEUx4Motl198V0J-FKE1VxmcnkplK2XQqkg-hwymYybMpOMSUbpd_BDe9Zt18tDyEnOL_9zC0LPKHlNCddvehYzablQ7gE6ZqQha84le3iwRXOETkq5IURoLvhjdMSFUEpqdox-Xsbq8zzaW5wGXLceT95tbQzOjtjGHpeaF1eXDMc5p9nnGnzZsRfX5zjamO4BuO09aE0hgglKIWM_elczILYGh8MulHU1pFjwj1C3eAxz6CHi1GULr56gR4Mdi396t6_Ql3dvP28-rK8-vr_cnF-tHW9VXVPpBi0E7RzVlPSNbAbqHelU33WtY1JJLwc_cO45s5xIDkt1bSPbXljNFV-hs73uvHST752PFeozcw6Tzbcm2WD-9cSwNV_Td6M10UJqEDi9E8jp2-JLNVMozo8jVJGWYpiE_lKqIfQKvfwPvUlLjlAeULJpGFWCAfVqTznoVsl-OCRDidkN2Vyw60-_h7wB-MXf6R_Q-6kC8HwP5OIO3j-_hP8CoGiwZQ</recordid><startdate>20230209</startdate><enddate>20230209</enddate><creator>Morzy, Diana</creator><creator>Tekin, Cem</creator><creator>Caroprese, Vincenzo</creator><creator>Rubio-Sánchez, Roger</creator><creator>Di Michele, Lorenzo</creator><creator>Bastings, Maartje M. C</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8818-4286</orcidid><orcidid>https://orcid.org/0000-0002-7603-4018</orcidid><orcidid>https://orcid.org/0000-0002-1458-9747</orcidid><orcidid>https://orcid.org/0000-0001-5909-2876</orcidid><orcidid>https://orcid.org/0000-0002-6814-8277</orcidid><orcidid>https://orcid.org/0000-0001-5574-5809</orcidid></search><sort><creationdate>20230209</creationdate><title>Interplay of the mechanical and structural properties of DNA nanostructures determines their electrostatic interactions with lipid membranes</title><author>Morzy, Diana ; Tekin, Cem ; Caroprese, Vincenzo ; Rubio-Sánchez, Roger ; Di Michele, Lorenzo ; Bastings, Maartje M. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-17cf9661bc1910d474f1ec0b8dbb5c2787e7fef33e32a30733078b5475d6a9383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Binding</topic><topic>Biological activity</topic><topic>Chemistry</topic><topic>Current carriers</topic><topic>DNA - chemistry</topic><topic>Electrostatics</topic><topic>Ions</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Magnesium</topic><topic>Mechanical properties</topic><topic>Membranes</topic><topic>Molecular structure</topic><topic>Nanostructures - chemistry</topic><topic>Nucleic acids</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morzy, Diana</creatorcontrib><creatorcontrib>Tekin, Cem</creatorcontrib><creatorcontrib>Caroprese, Vincenzo</creatorcontrib><creatorcontrib>Rubio-Sánchez, Roger</creatorcontrib><creatorcontrib>Di Michele, Lorenzo</creatorcontrib><creatorcontrib>Bastings, Maartje M. C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morzy, Diana</au><au>Tekin, Cem</au><au>Caroprese, Vincenzo</au><au>Rubio-Sánchez, Roger</au><au>Di Michele, Lorenzo</au><au>Bastings, Maartje M. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay of the mechanical and structural properties of DNA nanostructures determines their electrostatic interactions with lipid membranes</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2023-02-09</date><risdate>2023</risdate><volume>15</volume><issue>6</issue><spage>2849</spage><epage>2859</epage><pages>2849-2859</pages><issn>2040-3364</issn><issn>2040-3372</issn><eissn>2040-3372</eissn><abstract>Nucleic acids and lipids function in close proximity in biological processes, as well as in nanoengineered constructs for therapeutic applications. As both molecules carry a rich charge profile, and frequently coexist in complex ionic solutions, the electrostatics surely play a pivotal role in interactions between them. Here we discuss how each component of a DNA/ion/lipid system determines its electrostatic attachment. We examine membrane binding of a library of DNA molecules varying from nanoengineered DNA origami through plasmids to short DNA domains, demonstrating the interplay between the molecular structure of the nucleic acid and the phase of lipid bilayers. Furthermore, the magnitude of DNA/lipid interactions is tuned by varying the concentration of magnesium ions in the physiologically relevant range. Notably, we observe that the structural and mechanical properties of DNA are critical in determining its attachment to lipid bilayers and demonstrate that binding is correlated positively with the size, and negatively with the flexibility of the nucleic acid. The findings are utilized in a proof-of-concept comparison of membrane interactions of two DNA origami designs - potential nanotherapeutic platforms - showing how the results can have a direct impact on the choice of DNA geometry for biotechnological applications. Nucleic acids and lipids function in close proximity in biological processes, as well as in nanoengineered constructs for therapeutic applications.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36688792</pmid><doi>10.1039/d2nr05368c</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8818-4286</orcidid><orcidid>https://orcid.org/0000-0002-7603-4018</orcidid><orcidid>https://orcid.org/0000-0002-1458-9747</orcidid><orcidid>https://orcid.org/0000-0001-5909-2876</orcidid><orcidid>https://orcid.org/0000-0002-6814-8277</orcidid><orcidid>https://orcid.org/0000-0001-5574-5809</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2023-02, Vol.15 (6), p.2849-2859
issn 2040-3364
2040-3372
2040-3372
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9909679
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Binding
Biological activity
Chemistry
Current carriers
DNA - chemistry
Electrostatics
Ions
Lipid Bilayers - chemistry
Lipids
Magnesium
Mechanical properties
Membranes
Molecular structure
Nanostructures - chemistry
Nucleic acids
Static Electricity
title Interplay of the mechanical and structural properties of DNA nanostructures determines their electrostatic interactions with lipid membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20of%20the%20mechanical%20and%20structural%20properties%20of%20DNA%20nanostructures%20determines%20their%20electrostatic%20interactions%20with%20lipid%20membranes&rft.jtitle=Nanoscale&rft.au=Morzy,%20Diana&rft.date=2023-02-09&rft.volume=15&rft.issue=6&rft.spage=2849&rft.epage=2859&rft.pages=2849-2859&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d2nr05368c&rft_dat=%3Cproquest_pubme%3E2774421862%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774421862&rft_id=info:pmid/36688792&rfr_iscdi=true