The spectral sensitivity of human circadian phase resetting and melatonin suppression to light changes dynamically with light duration
Human circadian, neuroendocrine, and neurobehavioral responses to light are mediated primarily by melanopsin-containing intrinsically-photosensitive retinal ganglion cells (ipRGCs) but they also receive input from visual photoreceptors. Relative photoreceptor contributions are irradiance- and durati...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-12, Vol.119 (51), p.1-10 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 51 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | St Hilaire, Melissa A. Ámundadóttir, María L. Rahman, Shadab A. Rajaratnam, Shantha M. W. Rüger, Melanie Brainard, George C. Czeisler, Charles A. Andersen, Marilyne Gooley, Joshua J. Lockley, Steven W. |
description | Human circadian, neuroendocrine, and neurobehavioral responses to light are mediated primarily by melanopsin-containing intrinsically-photosensitive retinal ganglion cells (ipRGCs) but they also receive input from visual photoreceptors. Relative photoreceptor contributions are irradiance- and duration-dependent but results for long-duration light exposures are limited. We constructed irradiance-response curves and action spectra for melatonin suppression and circadian resetting responses in participants exposed to 6.5-h monochromatic 420, 460, 480, 507, 555, or 620 nm light exposures initiated near the onset of nocturnal melatonin secretion. Melatonin suppression and phase resetting action spectra were best fit by a single-opsin template with lambdamax at 481 and 483 nm, respectively. Linear combinations of melanopsin (ipRGC), short-wavelength (S) cone, and combined long- and medium-wavelength (L+M) cone functions were also fit and compared. For melatonin suppression, lambdamax was 441 nm in the first quarter of the 6.5-h exposure with a second peak at 550 nm, suggesting strong initial S and L+M cone contribution. This contribution decayed over time; lambdamax was 485 nm in the final quarter of light exposure, consistent with a predominant melanopsin contribution. Similarly, for circadian resetting, lambdamax ranged from 445 nm (all three functions) to 487 nm (L+M-cone and melanopsin functions only), suggesting significant S-cone contribution, consistent with recent model findings that the first few minutes of a light exposure drive the majority of the phase resetting response. These findings suggest a possible initial strong cone contribution in driving melatonin suppression and phase resetting, followed by a dominant melanopsin contribution over longer duration light exposures. |
doi_str_mv | 10.1073/pnas.2205301119 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9907124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27207408</jstor_id><sourcerecordid>27207408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-e8765ee4e1ff7527a457be5d9dc3f6f5ba033b84ff854ca1edeb092cd8f334933</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxSMEokvhzAlkiUsv245jO44vSKiigFSJSzlbjjPZeJXYwXaK9gvwuUm0y_LnNJbeb9746RXFawrXFCS7mbxJ12UJggGlVD0pNhQU3VZcwdNiA1DKbc1LflG8SGkPAErU8Ly4YJWAuqropvj50CNJE9oczUAS-uSye3T5QEJH-nk0nlgXrWnd8pp6k5BETJiz8ztifEtGHEwO3nmS5mlatOSCJzmQwe36TGxv_A4TaQ_ejM6aYTiQHy73J7mdo8nLwsviWWeGhK9O87L4dvfx4fbz9v7rpy-3H-63lnOWt1jLSiBypF0nRSkNF7JB0arWsq7qRGOAsabmXVcLbg3FFhtQpW3rjjGuGLss3h99p7kZsbXo19x6im408aCDcfpfxbte78KjVgokLflicHUyiOH7jCnr0SWLw2A8hjnpUgoOXKpqvfXuP3Qf5uiXeCuloKJcrIY3R8rGkFLE7vwZCnrtWK8d6z8dLxtv_85w5n-XugBvjsA-5RDPeilLkBxq9gt_urE4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759061454</pqid></control><display><type>article</type><title>The spectral sensitivity of human circadian phase resetting and melatonin suppression to light changes dynamically with light duration</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>St Hilaire, Melissa A. ; Ámundadóttir, María L. ; Rahman, Shadab A. ; Rajaratnam, Shantha M. W. ; Rüger, Melanie ; Brainard, George C. ; Czeisler, Charles A. ; Andersen, Marilyne ; Gooley, Joshua J. ; Lockley, Steven W.</creator><creatorcontrib>St Hilaire, Melissa A. ; Ámundadóttir, María L. ; Rahman, Shadab A. ; Rajaratnam, Shantha M. W. ; Rüger, Melanie ; Brainard, George C. ; Czeisler, Charles A. ; Andersen, Marilyne ; Gooley, Joshua J. ; Lockley, Steven W.</creatorcontrib><description>Human circadian, neuroendocrine, and neurobehavioral responses to light are mediated primarily by melanopsin-containing intrinsically-photosensitive retinal ganglion cells (ipRGCs) but they also receive input from visual photoreceptors. Relative photoreceptor contributions are irradiance- and duration-dependent but results for long-duration light exposures are limited. We constructed irradiance-response curves and action spectra for melatonin suppression and circadian resetting responses in participants exposed to 6.5-h monochromatic 420, 460, 480, 507, 555, or 620 nm light exposures initiated near the onset of nocturnal melatonin secretion. Melatonin suppression and phase resetting action spectra were best fit by a single-opsin template with lambdamax at 481 and 483 nm, respectively. Linear combinations of melanopsin (ipRGC), short-wavelength (S) cone, and combined long- and medium-wavelength (L+M) cone functions were also fit and compared. For melatonin suppression, lambdamax was 441 nm in the first quarter of the 6.5-h exposure with a second peak at 550 nm, suggesting strong initial S and L+M cone contribution. This contribution decayed over time; lambdamax was 485 nm in the final quarter of light exposure, consistent with a predominant melanopsin contribution. Similarly, for circadian resetting, lambdamax ranged from 445 nm (all three functions) to 487 nm (L+M-cone and melanopsin functions only), suggesting significant S-cone contribution, consistent with recent model findings that the first few minutes of a light exposure drive the majority of the phase resetting response. These findings suggest a possible initial strong cone contribution in driving melatonin suppression and phase resetting, followed by a dominant melanopsin contribution over longer duration light exposures.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2205301119</identifier><identifier>PMID: 36508661</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Circadian Rhythm - physiology ; Circadian rhythms ; Exposure ; Humans ; Irradiance ; Light ; Light effects ; Melanopsin ; Melatonin ; Photoreceptors ; Photosensitivity ; Retinal Cone Photoreceptor Cells - physiology ; Retinal ganglion cells ; Retinal Ganglion Cells - physiology ; Rod Opsins - physiology ; Spectra ; Spectral sensitivity ; Time Factors ; Wavelength</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-12, Vol.119 (51), p.1-10</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Dec 20, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-e8765ee4e1ff7527a457be5d9dc3f6f5ba033b84ff854ca1edeb092cd8f334933</citedby><cites>FETCH-LOGICAL-c443t-e8765ee4e1ff7527a457be5d9dc3f6f5ba033b84ff854ca1edeb092cd8f334933</cites><orcidid>0000-0003-4472-5786 ; 0000-0002-6066-6600 ; 0000-0002-8729-0500 ; 0000-0001-5209-2881 ; 0000-0002-5700-8391 ; 0000-0001-8813-1184 ; 0000-0002-4830-3583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907124/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907124/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36508661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>St Hilaire, Melissa A.</creatorcontrib><creatorcontrib>Ámundadóttir, María L.</creatorcontrib><creatorcontrib>Rahman, Shadab A.</creatorcontrib><creatorcontrib>Rajaratnam, Shantha M. W.</creatorcontrib><creatorcontrib>Rüger, Melanie</creatorcontrib><creatorcontrib>Brainard, George C.</creatorcontrib><creatorcontrib>Czeisler, Charles A.</creatorcontrib><creatorcontrib>Andersen, Marilyne</creatorcontrib><creatorcontrib>Gooley, Joshua J.</creatorcontrib><creatorcontrib>Lockley, Steven W.</creatorcontrib><title>The spectral sensitivity of human circadian phase resetting and melatonin suppression to light changes dynamically with light duration</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Human circadian, neuroendocrine, and neurobehavioral responses to light are mediated primarily by melanopsin-containing intrinsically-photosensitive retinal ganglion cells (ipRGCs) but they also receive input from visual photoreceptors. Relative photoreceptor contributions are irradiance- and duration-dependent but results for long-duration light exposures are limited. We constructed irradiance-response curves and action spectra for melatonin suppression and circadian resetting responses in participants exposed to 6.5-h monochromatic 420, 460, 480, 507, 555, or 620 nm light exposures initiated near the onset of nocturnal melatonin secretion. Melatonin suppression and phase resetting action spectra were best fit by a single-opsin template with lambdamax at 481 and 483 nm, respectively. Linear combinations of melanopsin (ipRGC), short-wavelength (S) cone, and combined long- and medium-wavelength (L+M) cone functions were also fit and compared. For melatonin suppression, lambdamax was 441 nm in the first quarter of the 6.5-h exposure with a second peak at 550 nm, suggesting strong initial S and L+M cone contribution. This contribution decayed over time; lambdamax was 485 nm in the final quarter of light exposure, consistent with a predominant melanopsin contribution. Similarly, for circadian resetting, lambdamax ranged from 445 nm (all three functions) to 487 nm (L+M-cone and melanopsin functions only), suggesting significant S-cone contribution, consistent with recent model findings that the first few minutes of a light exposure drive the majority of the phase resetting response. These findings suggest a possible initial strong cone contribution in driving melatonin suppression and phase resetting, followed by a dominant melanopsin contribution over longer duration light exposures.</description><subject>Biological Sciences</subject><subject>Circadian Rhythm - physiology</subject><subject>Circadian rhythms</subject><subject>Exposure</subject><subject>Humans</subject><subject>Irradiance</subject><subject>Light</subject><subject>Light effects</subject><subject>Melanopsin</subject><subject>Melatonin</subject><subject>Photoreceptors</subject><subject>Photosensitivity</subject><subject>Retinal Cone Photoreceptor Cells - physiology</subject><subject>Retinal ganglion cells</subject><subject>Retinal Ganglion Cells - physiology</subject><subject>Rod Opsins - physiology</subject><subject>Spectra</subject><subject>Spectral sensitivity</subject><subject>Time Factors</subject><subject>Wavelength</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU9v1DAQxSMEokvhzAlkiUsv245jO44vSKiigFSJSzlbjjPZeJXYwXaK9gvwuUm0y_LnNJbeb9746RXFawrXFCS7mbxJ12UJggGlVD0pNhQU3VZcwdNiA1DKbc1LflG8SGkPAErU8Ly4YJWAuqropvj50CNJE9oczUAS-uSye3T5QEJH-nk0nlgXrWnd8pp6k5BETJiz8ztifEtGHEwO3nmS5mlatOSCJzmQwe36TGxv_A4TaQ_ejM6aYTiQHy73J7mdo8nLwsviWWeGhK9O87L4dvfx4fbz9v7rpy-3H-63lnOWt1jLSiBypF0nRSkNF7JB0arWsq7qRGOAsabmXVcLbg3FFhtQpW3rjjGuGLss3h99p7kZsbXo19x6im408aCDcfpfxbte78KjVgokLflicHUyiOH7jCnr0SWLw2A8hjnpUgoOXKpqvfXuP3Qf5uiXeCuloKJcrIY3R8rGkFLE7vwZCnrtWK8d6z8dLxtv_85w5n-XugBvjsA-5RDPeilLkBxq9gt_urE4</recordid><startdate>20221220</startdate><enddate>20221220</enddate><creator>St Hilaire, Melissa A.</creator><creator>Ámundadóttir, María L.</creator><creator>Rahman, Shadab A.</creator><creator>Rajaratnam, Shantha M. W.</creator><creator>Rüger, Melanie</creator><creator>Brainard, George C.</creator><creator>Czeisler, Charles A.</creator><creator>Andersen, Marilyne</creator><creator>Gooley, Joshua J.</creator><creator>Lockley, Steven W.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4472-5786</orcidid><orcidid>https://orcid.org/0000-0002-6066-6600</orcidid><orcidid>https://orcid.org/0000-0002-8729-0500</orcidid><orcidid>https://orcid.org/0000-0001-5209-2881</orcidid><orcidid>https://orcid.org/0000-0002-5700-8391</orcidid><orcidid>https://orcid.org/0000-0001-8813-1184</orcidid><orcidid>https://orcid.org/0000-0002-4830-3583</orcidid></search><sort><creationdate>20221220</creationdate><title>The spectral sensitivity of human circadian phase resetting and melatonin suppression to light changes dynamically with light duration</title><author>St Hilaire, Melissa A. ; Ámundadóttir, María L. ; Rahman, Shadab A. ; Rajaratnam, Shantha M. W. ; Rüger, Melanie ; Brainard, George C. ; Czeisler, Charles A. ; Andersen, Marilyne ; Gooley, Joshua J. ; Lockley, Steven W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-e8765ee4e1ff7527a457be5d9dc3f6f5ba033b84ff854ca1edeb092cd8f334933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological Sciences</topic><topic>Circadian Rhythm - physiology</topic><topic>Circadian rhythms</topic><topic>Exposure</topic><topic>Humans</topic><topic>Irradiance</topic><topic>Light</topic><topic>Light effects</topic><topic>Melanopsin</topic><topic>Melatonin</topic><topic>Photoreceptors</topic><topic>Photosensitivity</topic><topic>Retinal Cone Photoreceptor Cells - physiology</topic><topic>Retinal ganglion cells</topic><topic>Retinal Ganglion Cells - physiology</topic><topic>Rod Opsins - physiology</topic><topic>Spectra</topic><topic>Spectral sensitivity</topic><topic>Time Factors</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>St Hilaire, Melissa A.</creatorcontrib><creatorcontrib>Ámundadóttir, María L.</creatorcontrib><creatorcontrib>Rahman, Shadab A.</creatorcontrib><creatorcontrib>Rajaratnam, Shantha M. W.</creatorcontrib><creatorcontrib>Rüger, Melanie</creatorcontrib><creatorcontrib>Brainard, George C.</creatorcontrib><creatorcontrib>Czeisler, Charles A.</creatorcontrib><creatorcontrib>Andersen, Marilyne</creatorcontrib><creatorcontrib>Gooley, Joshua J.</creatorcontrib><creatorcontrib>Lockley, Steven W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>St Hilaire, Melissa A.</au><au>Ámundadóttir, María L.</au><au>Rahman, Shadab A.</au><au>Rajaratnam, Shantha M. W.</au><au>Rüger, Melanie</au><au>Brainard, George C.</au><au>Czeisler, Charles A.</au><au>Andersen, Marilyne</au><au>Gooley, Joshua J.</au><au>Lockley, Steven W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The spectral sensitivity of human circadian phase resetting and melatonin suppression to light changes dynamically with light duration</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-12-20</date><risdate>2022</risdate><volume>119</volume><issue>51</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Human circadian, neuroendocrine, and neurobehavioral responses to light are mediated primarily by melanopsin-containing intrinsically-photosensitive retinal ganglion cells (ipRGCs) but they also receive input from visual photoreceptors. Relative photoreceptor contributions are irradiance- and duration-dependent but results for long-duration light exposures are limited. We constructed irradiance-response curves and action spectra for melatonin suppression and circadian resetting responses in participants exposed to 6.5-h monochromatic 420, 460, 480, 507, 555, or 620 nm light exposures initiated near the onset of nocturnal melatonin secretion. Melatonin suppression and phase resetting action spectra were best fit by a single-opsin template with lambdamax at 481 and 483 nm, respectively. Linear combinations of melanopsin (ipRGC), short-wavelength (S) cone, and combined long- and medium-wavelength (L+M) cone functions were also fit and compared. For melatonin suppression, lambdamax was 441 nm in the first quarter of the 6.5-h exposure with a second peak at 550 nm, suggesting strong initial S and L+M cone contribution. This contribution decayed over time; lambdamax was 485 nm in the final quarter of light exposure, consistent with a predominant melanopsin contribution. Similarly, for circadian resetting, lambdamax ranged from 445 nm (all three functions) to 487 nm (L+M-cone and melanopsin functions only), suggesting significant S-cone contribution, consistent with recent model findings that the first few minutes of a light exposure drive the majority of the phase resetting response. These findings suggest a possible initial strong cone contribution in driving melatonin suppression and phase resetting, followed by a dominant melanopsin contribution over longer duration light exposures.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36508661</pmid><doi>10.1073/pnas.2205301119</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4472-5786</orcidid><orcidid>https://orcid.org/0000-0002-6066-6600</orcidid><orcidid>https://orcid.org/0000-0002-8729-0500</orcidid><orcidid>https://orcid.org/0000-0001-5209-2881</orcidid><orcidid>https://orcid.org/0000-0002-5700-8391</orcidid><orcidid>https://orcid.org/0000-0001-8813-1184</orcidid><orcidid>https://orcid.org/0000-0002-4830-3583</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-12, Vol.119 (51), p.1-10 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9907124 |
source | PubMed (Medline); MEDLINE; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences Circadian Rhythm - physiology Circadian rhythms Exposure Humans Irradiance Light Light effects Melanopsin Melatonin Photoreceptors Photosensitivity Retinal Cone Photoreceptor Cells - physiology Retinal ganglion cells Retinal Ganglion Cells - physiology Rod Opsins - physiology Spectra Spectral sensitivity Time Factors Wavelength |
title | The spectral sensitivity of human circadian phase resetting and melatonin suppression to light changes dynamically with light duration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20spectral%20sensitivity%20of%20human%20circadian%20phase%20resetting%20and%20melatonin%20suppression%20to%20light%20changes%20dynamically%20with%20light%20duration&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=St%20Hilaire,%20Melissa%20A.&rft.date=2022-12-20&rft.volume=119&rft.issue=51&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2205301119&rft_dat=%3Cjstor_pubme%3E27207408%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759061454&rft_id=info:pmid/36508661&rft_jstor_id=27207408&rfr_iscdi=true |