Predicting prognosis for adults with depression using individual symptom data: a comparison of modelling approaches

This study aimed to develop, validate and compare the performance of models predicting post-treatment outcomes for depressed adults based on pre-treatment data. Individual patient data from all six eligible randomised controlled trials were used to develop ( = 3, = 1722) and test ( = 3, = 918) nine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological medicine 2023-01, Vol.53 (2), p.408-418
Hauptverfasser: Buckman, J. E. J., Cohen, Z. D., O'Driscoll, C., Fried, E. I., Saunders, R., Ambler, G., DeRubeis, R. J., Gilbody, S., Hollon, S. D., Kendrick, T., Watkins, E., Eley, T.C., Peel, A. J., Rayner, C., Kessler, D., Wiles, N., Lewis, G., Pilling, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 418
container_issue 2
container_start_page 408
container_title Psychological medicine
container_volume 53
creator Buckman, J. E. J.
Cohen, Z. D.
O'Driscoll, C.
Fried, E. I.
Saunders, R.
Ambler, G.
DeRubeis, R. J.
Gilbody, S.
Hollon, S. D.
Kendrick, T.
Watkins, E.
Eley, T.C.
Peel, A. J.
Rayner, C.
Kessler, D.
Wiles, N.
Lewis, G.
Pilling, S.
description This study aimed to develop, validate and compare the performance of models predicting post-treatment outcomes for depressed adults based on pre-treatment data. Individual patient data from all six eligible randomised controlled trials were used to develop ( = 3, = 1722) and test ( = 3, = 918) nine models. Predictors included depressive and anxiety symptoms, social support, life events and alcohol use. Weighted sum scores were developed using coefficient weights derived from network centrality statistics (models 1-3) and factor loadings from a confirmatory factor analysis (model 4). Unweighted sum score models were tested using elastic net regularised (ENR) and ordinary least squares (OLS) regression (models 5 and 6). Individual items were then included in ENR and OLS (models 7 and 8). All models were compared to one another and to a null model (mean post-baseline Beck Depression Inventory Second Edition (BDI-II) score in the training data: model 9). Primary outcome: BDI-II scores at 3-4 months. Models 1-7 all outperformed the null model and model 8. Model performance was very similar across models 1-6, meaning that differential weights applied to the baseline sum scores had little impact. Any of the modelling techniques (models 1-7) could be used to inform prognostic predictions for depressed adults with differences in the proportions of patients reaching remission based on the predicted severity of depressive symptoms post-treatment. However, the majority of variance in prognosis remained unexplained. It may be necessary to include a broader range of biopsychosocial variables to better adjudicate between competing models, and to derive models with greater clinical utility for treatment-seeking adults with depression.
doi_str_mv 10.1017/S0033291721001616
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9899563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0033291721001616</cupid><sourcerecordid>2522620519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-11c05cc06c1e8e84fa1f3e72034d4215779ac7796efc25544f0a74f99a3ea7ae3</originalsourceid><addsrcrecordid>eNp1kU2L1TAYhYMoznX0B7iRgBs31bxJ2jQuBBn8ggEFdR3eyce9GdqmJu3I_HtT5jp-4SZZnOec5HAIeQzsOTBQLz4zJgTXoDgwBh10d8gOZKebXqv-LtltcrPpJ-RBKZeVESD5fXIihG65aPsdKZ-yd9EucdrTOaf9lEosNKRM0a3DUuj3uByo83P2pcQ00bVsaJxcvIpuxYGW63Fe0kgdLviSIrVpnDHHUtkU6JicH4bNgnPNR3vw5SG5F3Ao_tHxPiVf3775cva-Of_47sPZ6_PGSgVLA2BZay3rLPje9zIgBOEVZ0I6yaFVSqOtR-eD5W0rZWCoZNAahUeFXpySVze583oxemf9tGQczJzjiPnaJIzmT2WKB7NPV0b3WredqAHPjgE5fVt9WcwYi619cPJpLYa3nHectaAr-vQv9DKtear1DFcKeqmkZpWCG8rmVEr24fYzwMw2qfln0up58nuLW8fPDSsgjqE4XuTo9v7X2_-P_QGsDq33</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771847490</pqid></control><display><type>article</type><title>Predicting prognosis for adults with depression using individual symptom data: a comparison of modelling approaches</title><source>MEDLINE</source><source>Cambridge Journals</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><creator>Buckman, J. E. J. ; Cohen, Z. D. ; O'Driscoll, C. ; Fried, E. I. ; Saunders, R. ; Ambler, G. ; DeRubeis, R. J. ; Gilbody, S. ; Hollon, S. D. ; Kendrick, T. ; Watkins, E. ; Eley, T.C. ; Peel, A. J. ; Rayner, C. ; Kessler, D. ; Wiles, N. ; Lewis, G. ; Pilling, S.</creator><creatorcontrib>Buckman, J. E. J. ; Cohen, Z. D. ; O'Driscoll, C. ; Fried, E. I. ; Saunders, R. ; Ambler, G. ; DeRubeis, R. J. ; Gilbody, S. ; Hollon, S. D. ; Kendrick, T. ; Watkins, E. ; Eley, T.C. ; Peel, A. J. ; Rayner, C. ; Kessler, D. ; Wiles, N. ; Lewis, G. ; Pilling, S.</creatorcontrib><description>This study aimed to develop, validate and compare the performance of models predicting post-treatment outcomes for depressed adults based on pre-treatment data. Individual patient data from all six eligible randomised controlled trials were used to develop ( = 3, = 1722) and test ( = 3, = 918) nine models. Predictors included depressive and anxiety symptoms, social support, life events and alcohol use. Weighted sum scores were developed using coefficient weights derived from network centrality statistics (models 1-3) and factor loadings from a confirmatory factor analysis (model 4). Unweighted sum score models were tested using elastic net regularised (ENR) and ordinary least squares (OLS) regression (models 5 and 6). Individual items were then included in ENR and OLS (models 7 and 8). All models were compared to one another and to a null model (mean post-baseline Beck Depression Inventory Second Edition (BDI-II) score in the training data: model 9). Primary outcome: BDI-II scores at 3-4 months. Models 1-7 all outperformed the null model and model 8. Model performance was very similar across models 1-6, meaning that differential weights applied to the baseline sum scores had little impact. Any of the modelling techniques (models 1-7) could be used to inform prognostic predictions for depressed adults with differences in the proportions of patients reaching remission based on the predicted severity of depressive symptoms post-treatment. However, the majority of variance in prognosis remained unexplained. It may be necessary to include a broader range of biopsychosocial variables to better adjudicate between competing models, and to derive models with greater clinical utility for treatment-seeking adults with depression.</description><identifier>ISSN: 0033-2917</identifier><identifier>ISSN: 1469-8978</identifier><identifier>EISSN: 1469-8978</identifier><identifier>DOI: 10.1017/S0033291721001616</identifier><identifier>PMID: 33952358</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Adult ; Adults ; Alcohol use ; Anxiety ; Biopsychosocial aspects ; Clinical outcomes ; Clinical trials ; Confirmatory factor analysis ; Datasets ; Depression - psychology ; Ethics ; Factor analysis ; Health services utilization ; Help seeking behavior ; Humans ; Life events ; Medical prognosis ; Mental depression ; Network centrality ; Original ; Original Article ; Patients ; Primary care ; Prognosis ; Psychiatric Status Rating Scales ; Regression analysis ; Remission ; Remission (Medicine) ; Social anxiety ; Social interactions ; Social support ; Statistical analysis ; Treatment Outcome</subject><ispartof>Psychological medicine, 2023-01, Vol.53 (2), p.408-418</ispartof><rights>Copyright © The Author(s), 2021. Published by Cambridge University Press</rights><rights>Copyright © The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021 2021 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-11c05cc06c1e8e84fa1f3e72034d4215779ac7796efc25544f0a74f99a3ea7ae3</citedby><cites>FETCH-LOGICAL-c471t-11c05cc06c1e8e84fa1f3e72034d4215779ac7796efc25544f0a74f99a3ea7ae3</cites><orcidid>0000-0002-2281-0907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0033291721001616/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,230,315,781,785,886,12851,27929,27930,31004,55633</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33952358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buckman, J. E. J.</creatorcontrib><creatorcontrib>Cohen, Z. D.</creatorcontrib><creatorcontrib>O'Driscoll, C.</creatorcontrib><creatorcontrib>Fried, E. I.</creatorcontrib><creatorcontrib>Saunders, R.</creatorcontrib><creatorcontrib>Ambler, G.</creatorcontrib><creatorcontrib>DeRubeis, R. J.</creatorcontrib><creatorcontrib>Gilbody, S.</creatorcontrib><creatorcontrib>Hollon, S. D.</creatorcontrib><creatorcontrib>Kendrick, T.</creatorcontrib><creatorcontrib>Watkins, E.</creatorcontrib><creatorcontrib>Eley, T.C.</creatorcontrib><creatorcontrib>Peel, A. J.</creatorcontrib><creatorcontrib>Rayner, C.</creatorcontrib><creatorcontrib>Kessler, D.</creatorcontrib><creatorcontrib>Wiles, N.</creatorcontrib><creatorcontrib>Lewis, G.</creatorcontrib><creatorcontrib>Pilling, S.</creatorcontrib><title>Predicting prognosis for adults with depression using individual symptom data: a comparison of modelling approaches</title><title>Psychological medicine</title><addtitle>Psychol. Med</addtitle><description>This study aimed to develop, validate and compare the performance of models predicting post-treatment outcomes for depressed adults based on pre-treatment data. Individual patient data from all six eligible randomised controlled trials were used to develop ( = 3, = 1722) and test ( = 3, = 918) nine models. Predictors included depressive and anxiety symptoms, social support, life events and alcohol use. Weighted sum scores were developed using coefficient weights derived from network centrality statistics (models 1-3) and factor loadings from a confirmatory factor analysis (model 4). Unweighted sum score models were tested using elastic net regularised (ENR) and ordinary least squares (OLS) regression (models 5 and 6). Individual items were then included in ENR and OLS (models 7 and 8). All models were compared to one another and to a null model (mean post-baseline Beck Depression Inventory Second Edition (BDI-II) score in the training data: model 9). Primary outcome: BDI-II scores at 3-4 months. Models 1-7 all outperformed the null model and model 8. Model performance was very similar across models 1-6, meaning that differential weights applied to the baseline sum scores had little impact. Any of the modelling techniques (models 1-7) could be used to inform prognostic predictions for depressed adults with differences in the proportions of patients reaching remission based on the predicted severity of depressive symptoms post-treatment. However, the majority of variance in prognosis remained unexplained. It may be necessary to include a broader range of biopsychosocial variables to better adjudicate between competing models, and to derive models with greater clinical utility for treatment-seeking adults with depression.</description><subject>Adult</subject><subject>Adults</subject><subject>Alcohol use</subject><subject>Anxiety</subject><subject>Biopsychosocial aspects</subject><subject>Clinical outcomes</subject><subject>Clinical trials</subject><subject>Confirmatory factor analysis</subject><subject>Datasets</subject><subject>Depression - psychology</subject><subject>Ethics</subject><subject>Factor analysis</subject><subject>Health services utilization</subject><subject>Help seeking behavior</subject><subject>Humans</subject><subject>Life events</subject><subject>Medical prognosis</subject><subject>Mental depression</subject><subject>Network centrality</subject><subject>Original</subject><subject>Original Article</subject><subject>Patients</subject><subject>Primary care</subject><subject>Prognosis</subject><subject>Psychiatric Status Rating Scales</subject><subject>Regression analysis</subject><subject>Remission</subject><subject>Remission (Medicine)</subject><subject>Social anxiety</subject><subject>Social interactions</subject><subject>Social support</subject><subject>Statistical analysis</subject><subject>Treatment Outcome</subject><issn>0033-2917</issn><issn>1469-8978</issn><issn>1469-8978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU2L1TAYhYMoznX0B7iRgBs31bxJ2jQuBBn8ggEFdR3eyce9GdqmJu3I_HtT5jp-4SZZnOec5HAIeQzsOTBQLz4zJgTXoDgwBh10d8gOZKebXqv-LtltcrPpJ-RBKZeVESD5fXIihG65aPsdKZ-yd9EucdrTOaf9lEosNKRM0a3DUuj3uByo83P2pcQ00bVsaJxcvIpuxYGW63Fe0kgdLviSIrVpnDHHUtkU6JicH4bNgnPNR3vw5SG5F3Ao_tHxPiVf3775cva-Of_47sPZ6_PGSgVLA2BZay3rLPje9zIgBOEVZ0I6yaFVSqOtR-eD5W0rZWCoZNAahUeFXpySVze583oxemf9tGQczJzjiPnaJIzmT2WKB7NPV0b3WredqAHPjgE5fVt9WcwYi619cPJpLYa3nHectaAr-vQv9DKtear1DFcKeqmkZpWCG8rmVEr24fYzwMw2qfln0up58nuLW8fPDSsgjqE4XuTo9v7X2_-P_QGsDq33</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Buckman, J. E. J.</creator><creator>Cohen, Z. D.</creator><creator>O'Driscoll, C.</creator><creator>Fried, E. I.</creator><creator>Saunders, R.</creator><creator>Ambler, G.</creator><creator>DeRubeis, R. J.</creator><creator>Gilbody, S.</creator><creator>Hollon, S. D.</creator><creator>Kendrick, T.</creator><creator>Watkins, E.</creator><creator>Eley, T.C.</creator><creator>Peel, A. J.</creator><creator>Rayner, C.</creator><creator>Kessler, D.</creator><creator>Wiles, N.</creator><creator>Lewis, G.</creator><creator>Pilling, S.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QJ</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HEHIP</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2281-0907</orcidid></search><sort><creationdate>20230101</creationdate><title>Predicting prognosis for adults with depression using individual symptom data: a comparison of modelling approaches</title><author>Buckman, J. E. J. ; Cohen, Z. D. ; O'Driscoll, C. ; Fried, E. I. ; Saunders, R. ; Ambler, G. ; DeRubeis, R. J. ; Gilbody, S. ; Hollon, S. D. ; Kendrick, T. ; Watkins, E. ; Eley, T.C. ; Peel, A. J. ; Rayner, C. ; Kessler, D. ; Wiles, N. ; Lewis, G. ; Pilling, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-11c05cc06c1e8e84fa1f3e72034d4215779ac7796efc25544f0a74f99a3ea7ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adult</topic><topic>Adults</topic><topic>Alcohol use</topic><topic>Anxiety</topic><topic>Biopsychosocial aspects</topic><topic>Clinical outcomes</topic><topic>Clinical trials</topic><topic>Confirmatory factor analysis</topic><topic>Datasets</topic><topic>Depression - psychology</topic><topic>Ethics</topic><topic>Factor analysis</topic><topic>Health services utilization</topic><topic>Help seeking behavior</topic><topic>Humans</topic><topic>Life events</topic><topic>Medical prognosis</topic><topic>Mental depression</topic><topic>Network centrality</topic><topic>Original</topic><topic>Original Article</topic><topic>Patients</topic><topic>Primary care</topic><topic>Prognosis</topic><topic>Psychiatric Status Rating Scales</topic><topic>Regression analysis</topic><topic>Remission</topic><topic>Remission (Medicine)</topic><topic>Social anxiety</topic><topic>Social interactions</topic><topic>Social support</topic><topic>Statistical analysis</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buckman, J. E. J.</creatorcontrib><creatorcontrib>Cohen, Z. D.</creatorcontrib><creatorcontrib>O'Driscoll, C.</creatorcontrib><creatorcontrib>Fried, E. I.</creatorcontrib><creatorcontrib>Saunders, R.</creatorcontrib><creatorcontrib>Ambler, G.</creatorcontrib><creatorcontrib>DeRubeis, R. J.</creatorcontrib><creatorcontrib>Gilbody, S.</creatorcontrib><creatorcontrib>Hollon, S. D.</creatorcontrib><creatorcontrib>Kendrick, T.</creatorcontrib><creatorcontrib>Watkins, E.</creatorcontrib><creatorcontrib>Eley, T.C.</creatorcontrib><creatorcontrib>Peel, A. J.</creatorcontrib><creatorcontrib>Rayner, C.</creatorcontrib><creatorcontrib>Kessler, D.</creatorcontrib><creatorcontrib>Wiles, N.</creatorcontrib><creatorcontrib>Lewis, G.</creatorcontrib><creatorcontrib>Pilling, S.</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Sociology Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Sociology Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Psychological medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buckman, J. E. J.</au><au>Cohen, Z. D.</au><au>O'Driscoll, C.</au><au>Fried, E. I.</au><au>Saunders, R.</au><au>Ambler, G.</au><au>DeRubeis, R. J.</au><au>Gilbody, S.</au><au>Hollon, S. D.</au><au>Kendrick, T.</au><au>Watkins, E.</au><au>Eley, T.C.</au><au>Peel, A. J.</au><au>Rayner, C.</au><au>Kessler, D.</au><au>Wiles, N.</au><au>Lewis, G.</au><au>Pilling, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting prognosis for adults with depression using individual symptom data: a comparison of modelling approaches</atitle><jtitle>Psychological medicine</jtitle><addtitle>Psychol. Med</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>53</volume><issue>2</issue><spage>408</spage><epage>418</epage><pages>408-418</pages><issn>0033-2917</issn><issn>1469-8978</issn><eissn>1469-8978</eissn><abstract>This study aimed to develop, validate and compare the performance of models predicting post-treatment outcomes for depressed adults based on pre-treatment data. Individual patient data from all six eligible randomised controlled trials were used to develop ( = 3, = 1722) and test ( = 3, = 918) nine models. Predictors included depressive and anxiety symptoms, social support, life events and alcohol use. Weighted sum scores were developed using coefficient weights derived from network centrality statistics (models 1-3) and factor loadings from a confirmatory factor analysis (model 4). Unweighted sum score models were tested using elastic net regularised (ENR) and ordinary least squares (OLS) regression (models 5 and 6). Individual items were then included in ENR and OLS (models 7 and 8). All models were compared to one another and to a null model (mean post-baseline Beck Depression Inventory Second Edition (BDI-II) score in the training data: model 9). Primary outcome: BDI-II scores at 3-4 months. Models 1-7 all outperformed the null model and model 8. Model performance was very similar across models 1-6, meaning that differential weights applied to the baseline sum scores had little impact. Any of the modelling techniques (models 1-7) could be used to inform prognostic predictions for depressed adults with differences in the proportions of patients reaching remission based on the predicted severity of depressive symptoms post-treatment. However, the majority of variance in prognosis remained unexplained. It may be necessary to include a broader range of biopsychosocial variables to better adjudicate between competing models, and to derive models with greater clinical utility for treatment-seeking adults with depression.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><pmid>33952358</pmid><doi>10.1017/S0033291721001616</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2281-0907</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-2917
ispartof Psychological medicine, 2023-01, Vol.53 (2), p.408-418
issn 0033-2917
1469-8978
1469-8978
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9899563
source MEDLINE; Cambridge Journals; Applied Social Sciences Index & Abstracts (ASSIA)
subjects Adult
Adults
Alcohol use
Anxiety
Biopsychosocial aspects
Clinical outcomes
Clinical trials
Confirmatory factor analysis
Datasets
Depression - psychology
Ethics
Factor analysis
Health services utilization
Help seeking behavior
Humans
Life events
Medical prognosis
Mental depression
Network centrality
Original
Original Article
Patients
Primary care
Prognosis
Psychiatric Status Rating Scales
Regression analysis
Remission
Remission (Medicine)
Social anxiety
Social interactions
Social support
Statistical analysis
Treatment Outcome
title Predicting prognosis for adults with depression using individual symptom data: a comparison of modelling approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T07%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20prognosis%20for%20adults%20with%20depression%20using%20individual%20symptom%20data:%20a%20comparison%20of%20modelling%20approaches&rft.jtitle=Psychological%20medicine&rft.au=Buckman,%20J.%20E.%20J.&rft.date=2023-01-01&rft.volume=53&rft.issue=2&rft.spage=408&rft.epage=418&rft.pages=408-418&rft.issn=0033-2917&rft.eissn=1469-8978&rft_id=info:doi/10.1017/S0033291721001616&rft_dat=%3Cproquest_pubme%3E2522620519%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771847490&rft_id=info:pmid/33952358&rft_cupid=10_1017_S0033291721001616&rfr_iscdi=true