Surface coating by mechanofusion modulates bulk charging pathways and battery performance of Ni-rich layered cathodes

Ni-rich layered oxides as high-capacity battery cathodes suffer from degradation at high voltages. We utilize a dry surface modification method, mechanofusion (MF), to achieve enhanced battery stability. The simplicity, high yield, and flexibility make it cost-effective and highly attractive for pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2022-12, Vol.119 (49), p.e2212802119-e2212802119
Hauptverfasser: Hou, Dong, Han, Jiaxiu, Geng, Chenxi, Xu, Zhengrui, AlMarzooqi, Modhi M, Zhang, Jin, Yang, Zhijie, Min, Jungki, Xiao, Xianghui, Borkiewicz, Olaf, Wiaderek, Kamila, Liu, Yijin, Zhao, Kejie, Lin, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2212802119
container_issue 49
container_start_page e2212802119
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator Hou, Dong
Han, Jiaxiu
Geng, Chenxi
Xu, Zhengrui
AlMarzooqi, Modhi M
Zhang, Jin
Yang, Zhijie
Min, Jungki
Xiao, Xianghui
Borkiewicz, Olaf
Wiaderek, Kamila
Liu, Yijin
Zhao, Kejie
Lin, Feng
description Ni-rich layered oxides as high-capacity battery cathodes suffer from degradation at high voltages. We utilize a dry surface modification method, mechanofusion (MF), to achieve enhanced battery stability. The simplicity, high yield, and flexibility make it cost-effective and highly attractive for processing at the industrial scale. The underlying mechanisms responsible for performance improvement are unveiled by a systematic study combining multiple probes, e.g., 3D nano-tomography, spectroscopic imaging, in situ synchrotron diffraction, and finite element analysis (FEA). MF affects the bulk crystallography by introducing partially disordered structure, microstrain, and local lattice variation. Furthermore, the crack initiation and propagation pattern during delithiation are regulated and the overall mechanical fracture is reduced after such surface coating. We validate that MF can alter the bulk charging pathways. Such a synergic effect between surface modification and bulk charge distribution is fundamentally important for designing next-generation battery cathode materials.
doi_str_mv 10.1073/pnas.2212802119
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9894257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755157203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-8672015dddac62093ec00925890504fea6aa908f923275473e68458638dd718a3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EotuFMzdkwYVLWtuxE_uChCooSBUcgLM1azu7LokdbAeU_x6vtpSP0xzmN2_mzUPoGSUXlPTt5RwgXzBGmSSMUvUAbShRtOm4Ig_RhhDWN5IzfobOc74lhCghyWN01nZc8J7LDVo-L2kA47CJUHzY492KJ2cOEOKwZB8DnqJdRigu490yfsO1lfZHcIZy-AlrxhAs3kEpLq14dmmIaYJQFeOAP_omeXPAI6wuOYtNnYnW5Sfo0QBjdk_v6hZ9fff2y9X75ubT9YerNzeNEZSXRnY9I1RYa8F0jKjWmWqBCamIIHxw0AEoIgfFWtZXQ63rJBeya6W1PZXQbtHrk-687CZnjQslwajn5CdIq47g9b-d4A96H39oJRVnoq8CL04CMRevs_Gl_sbEEJwpmqqet3XbFr2625Li98XloiefjRtHCC4uWbOe865e1tGKvvwPvY1LCvUHlRKCimq4rdTliTIp5pzccH8xJfqYuz7mrv_kXiee_230nv8ddPsLZfqqTg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755157203</pqid></control><display><type>article</type><title>Surface coating by mechanofusion modulates bulk charging pathways and battery performance of Ni-rich layered cathodes</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hou, Dong ; Han, Jiaxiu ; Geng, Chenxi ; Xu, Zhengrui ; AlMarzooqi, Modhi M ; Zhang, Jin ; Yang, Zhijie ; Min, Jungki ; Xiao, Xianghui ; Borkiewicz, Olaf ; Wiaderek, Kamila ; Liu, Yijin ; Zhao, Kejie ; Lin, Feng</creator><creatorcontrib>Hou, Dong ; Han, Jiaxiu ; Geng, Chenxi ; Xu, Zhengrui ; AlMarzooqi, Modhi M ; Zhang, Jin ; Yang, Zhijie ; Min, Jungki ; Xiao, Xianghui ; Borkiewicz, Olaf ; Wiaderek, Kamila ; Liu, Yijin ; Zhao, Kejie ; Lin, Feng ; Argonne National Laboratory (ANL), Argonne, IL (United States) ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Ni-rich layered oxides as high-capacity battery cathodes suffer from degradation at high voltages. We utilize a dry surface modification method, mechanofusion (MF), to achieve enhanced battery stability. The simplicity, high yield, and flexibility make it cost-effective and highly attractive for processing at the industrial scale. The underlying mechanisms responsible for performance improvement are unveiled by a systematic study combining multiple probes, e.g., 3D nano-tomography, spectroscopic imaging, in situ synchrotron diffraction, and finite element analysis (FEA). MF affects the bulk crystallography by introducing partially disordered structure, microstrain, and local lattice variation. Furthermore, the crack initiation and propagation pattern during delithiation are regulated and the overall mechanical fracture is reduced after such surface coating. We validate that MF can alter the bulk charging pathways. Such a synergic effect between surface modification and bulk charge distribution is fundamentally important for designing next-generation battery cathode materials.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2212802119</identifier><identifier>PMID: 36454748</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Batteries ; Cathodes ; Charge distribution ; charge heterogeneity ; Charging ; coating ; Crack initiation ; Crack propagation ; Crystallography ; Electrode materials ; ENERGY STORAGE ; Finite element method ; in situ XRD ; Microstrain ; Physical Sciences ; rechargeable batteries ; Synchrotrons ; tomography</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-12, Vol.119 (49), p.e2212802119-e2212802119</ispartof><rights>Copyright National Academy of Sciences Dec 6, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-8672015dddac62093ec00925890504fea6aa908f923275473e68458638dd718a3</citedby><cites>FETCH-LOGICAL-c514t-8672015dddac62093ec00925890504fea6aa908f923275473e68458638dd718a3</cites><orcidid>0000-0002-3729-3148 ; 0000-0002-8417-2488 ; 0000-0002-0942-688X ; 0000-0002-0051-3661 ; 0000-0001-5030-7412 ; 000000020942688X ; 0000000237293148 ; 0000000284172488 ; 0000000150307412 ; 0000000200513661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894257/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894257/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36454748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1974386$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Dong</creatorcontrib><creatorcontrib>Han, Jiaxiu</creatorcontrib><creatorcontrib>Geng, Chenxi</creatorcontrib><creatorcontrib>Xu, Zhengrui</creatorcontrib><creatorcontrib>AlMarzooqi, Modhi M</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Yang, Zhijie</creatorcontrib><creatorcontrib>Min, Jungki</creatorcontrib><creatorcontrib>Xiao, Xianghui</creatorcontrib><creatorcontrib>Borkiewicz, Olaf</creatorcontrib><creatorcontrib>Wiaderek, Kamila</creatorcontrib><creatorcontrib>Liu, Yijin</creatorcontrib><creatorcontrib>Zhao, Kejie</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Surface coating by mechanofusion modulates bulk charging pathways and battery performance of Ni-rich layered cathodes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Ni-rich layered oxides as high-capacity battery cathodes suffer from degradation at high voltages. We utilize a dry surface modification method, mechanofusion (MF), to achieve enhanced battery stability. The simplicity, high yield, and flexibility make it cost-effective and highly attractive for processing at the industrial scale. The underlying mechanisms responsible for performance improvement are unveiled by a systematic study combining multiple probes, e.g., 3D nano-tomography, spectroscopic imaging, in situ synchrotron diffraction, and finite element analysis (FEA). MF affects the bulk crystallography by introducing partially disordered structure, microstrain, and local lattice variation. Furthermore, the crack initiation and propagation pattern during delithiation are regulated and the overall mechanical fracture is reduced after such surface coating. We validate that MF can alter the bulk charging pathways. Such a synergic effect between surface modification and bulk charge distribution is fundamentally important for designing next-generation battery cathode materials.</description><subject>Batteries</subject><subject>Cathodes</subject><subject>Charge distribution</subject><subject>charge heterogeneity</subject><subject>Charging</subject><subject>coating</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Crystallography</subject><subject>Electrode materials</subject><subject>ENERGY STORAGE</subject><subject>Finite element method</subject><subject>in situ XRD</subject><subject>Microstrain</subject><subject>Physical Sciences</subject><subject>rechargeable batteries</subject><subject>Synchrotrons</subject><subject>tomography</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxS0EotuFMzdkwYVLWtuxE_uChCooSBUcgLM1azu7LokdbAeU_x6vtpSP0xzmN2_mzUPoGSUXlPTt5RwgXzBGmSSMUvUAbShRtOm4Ig_RhhDWN5IzfobOc74lhCghyWN01nZc8J7LDVo-L2kA47CJUHzY492KJ2cOEOKwZB8DnqJdRigu490yfsO1lfZHcIZy-AlrxhAs3kEpLq14dmmIaYJQFeOAP_omeXPAI6wuOYtNnYnW5Sfo0QBjdk_v6hZ9fff2y9X75ubT9YerNzeNEZSXRnY9I1RYa8F0jKjWmWqBCamIIHxw0AEoIgfFWtZXQ63rJBeya6W1PZXQbtHrk-687CZnjQslwajn5CdIq47g9b-d4A96H39oJRVnoq8CL04CMRevs_Gl_sbEEJwpmqqet3XbFr2625Li98XloiefjRtHCC4uWbOe865e1tGKvvwPvY1LCvUHlRKCimq4rdTliTIp5pzccH8xJfqYuz7mrv_kXiee_230nv8ddPsLZfqqTg</recordid><startdate>20221206</startdate><enddate>20221206</enddate><creator>Hou, Dong</creator><creator>Han, Jiaxiu</creator><creator>Geng, Chenxi</creator><creator>Xu, Zhengrui</creator><creator>AlMarzooqi, Modhi M</creator><creator>Zhang, Jin</creator><creator>Yang, Zhijie</creator><creator>Min, Jungki</creator><creator>Xiao, Xianghui</creator><creator>Borkiewicz, Olaf</creator><creator>Wiaderek, Kamila</creator><creator>Liu, Yijin</creator><creator>Zhao, Kejie</creator><creator>Lin, Feng</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3729-3148</orcidid><orcidid>https://orcid.org/0000-0002-8417-2488</orcidid><orcidid>https://orcid.org/0000-0002-0942-688X</orcidid><orcidid>https://orcid.org/0000-0002-0051-3661</orcidid><orcidid>https://orcid.org/0000-0001-5030-7412</orcidid><orcidid>https://orcid.org/000000020942688X</orcidid><orcidid>https://orcid.org/0000000237293148</orcidid><orcidid>https://orcid.org/0000000284172488</orcidid><orcidid>https://orcid.org/0000000150307412</orcidid><orcidid>https://orcid.org/0000000200513661</orcidid></search><sort><creationdate>20221206</creationdate><title>Surface coating by mechanofusion modulates bulk charging pathways and battery performance of Ni-rich layered cathodes</title><author>Hou, Dong ; Han, Jiaxiu ; Geng, Chenxi ; Xu, Zhengrui ; AlMarzooqi, Modhi M ; Zhang, Jin ; Yang, Zhijie ; Min, Jungki ; Xiao, Xianghui ; Borkiewicz, Olaf ; Wiaderek, Kamila ; Liu, Yijin ; Zhao, Kejie ; Lin, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-8672015dddac62093ec00925890504fea6aa908f923275473e68458638dd718a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Cathodes</topic><topic>Charge distribution</topic><topic>charge heterogeneity</topic><topic>Charging</topic><topic>coating</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Crystallography</topic><topic>Electrode materials</topic><topic>ENERGY STORAGE</topic><topic>Finite element method</topic><topic>in situ XRD</topic><topic>Microstrain</topic><topic>Physical Sciences</topic><topic>rechargeable batteries</topic><topic>Synchrotrons</topic><topic>tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Dong</creatorcontrib><creatorcontrib>Han, Jiaxiu</creatorcontrib><creatorcontrib>Geng, Chenxi</creatorcontrib><creatorcontrib>Xu, Zhengrui</creatorcontrib><creatorcontrib>AlMarzooqi, Modhi M</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Yang, Zhijie</creatorcontrib><creatorcontrib>Min, Jungki</creatorcontrib><creatorcontrib>Xiao, Xianghui</creatorcontrib><creatorcontrib>Borkiewicz, Olaf</creatorcontrib><creatorcontrib>Wiaderek, Kamila</creatorcontrib><creatorcontrib>Liu, Yijin</creatorcontrib><creatorcontrib>Zhao, Kejie</creatorcontrib><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Dong</au><au>Han, Jiaxiu</au><au>Geng, Chenxi</au><au>Xu, Zhengrui</au><au>AlMarzooqi, Modhi M</au><au>Zhang, Jin</au><au>Yang, Zhijie</au><au>Min, Jungki</au><au>Xiao, Xianghui</au><au>Borkiewicz, Olaf</au><au>Wiaderek, Kamila</au><au>Liu, Yijin</au><au>Zhao, Kejie</au><au>Lin, Feng</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface coating by mechanofusion modulates bulk charging pathways and battery performance of Ni-rich layered cathodes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-12-06</date><risdate>2022</risdate><volume>119</volume><issue>49</issue><spage>e2212802119</spage><epage>e2212802119</epage><pages>e2212802119-e2212802119</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Ni-rich layered oxides as high-capacity battery cathodes suffer from degradation at high voltages. We utilize a dry surface modification method, mechanofusion (MF), to achieve enhanced battery stability. The simplicity, high yield, and flexibility make it cost-effective and highly attractive for processing at the industrial scale. The underlying mechanisms responsible for performance improvement are unveiled by a systematic study combining multiple probes, e.g., 3D nano-tomography, spectroscopic imaging, in situ synchrotron diffraction, and finite element analysis (FEA). MF affects the bulk crystallography by introducing partially disordered structure, microstrain, and local lattice variation. Furthermore, the crack initiation and propagation pattern during delithiation are regulated and the overall mechanical fracture is reduced after such surface coating. We validate that MF can alter the bulk charging pathways. Such a synergic effect between surface modification and bulk charge distribution is fundamentally important for designing next-generation battery cathode materials.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36454748</pmid><doi>10.1073/pnas.2212802119</doi><orcidid>https://orcid.org/0000-0002-3729-3148</orcidid><orcidid>https://orcid.org/0000-0002-8417-2488</orcidid><orcidid>https://orcid.org/0000-0002-0942-688X</orcidid><orcidid>https://orcid.org/0000-0002-0051-3661</orcidid><orcidid>https://orcid.org/0000-0001-5030-7412</orcidid><orcidid>https://orcid.org/000000020942688X</orcidid><orcidid>https://orcid.org/0000000237293148</orcidid><orcidid>https://orcid.org/0000000284172488</orcidid><orcidid>https://orcid.org/0000000150307412</orcidid><orcidid>https://orcid.org/0000000200513661</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-12, Vol.119 (49), p.e2212802119-e2212802119
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9894257
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Batteries
Cathodes
Charge distribution
charge heterogeneity
Charging
coating
Crack initiation
Crack propagation
Crystallography
Electrode materials
ENERGY STORAGE
Finite element method
in situ XRD
Microstrain
Physical Sciences
rechargeable batteries
Synchrotrons
tomography
title Surface coating by mechanofusion modulates bulk charging pathways and battery performance of Ni-rich layered cathodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20coating%20by%20mechanofusion%20modulates%20bulk%20charging%20pathways%20and%20battery%20performance%20of%20Ni-rich%20layered%20cathodes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hou,%20Dong&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2022-12-06&rft.volume=119&rft.issue=49&rft.spage=e2212802119&rft.epage=e2212802119&rft.pages=e2212802119-e2212802119&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2212802119&rft_dat=%3Cproquest_pubme%3E2755157203%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755157203&rft_id=info:pmid/36454748&rfr_iscdi=true