Trabecular bone ontogeny tracks neural development and life history among humans and non-human primates
Trabecular bone—the spongy bone inside marrow cavities—adapts to its mechanical environment during growth and development. Trabecular structure can therefore be interpreted as a functional record of locomotor behavior in extinct vertebrates. In this paper, we expand upon traditional links between fo...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-12, Vol.119 (49), p.1-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 49 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | Saers, Jaap P. P. Gordon, Adam D. Ryan, Timothy M. Stock, Jay T. |
description | Trabecular bone—the spongy bone inside marrow cavities—adapts to its mechanical environment during growth and development. Trabecular structure can therefore be interpreted as a functional record of locomotor behavior in extinct vertebrates. In this paper, we expand upon traditional links between form and function by situating ontogenetic trajectories of trabecular bone in four primate species into the broader developmental context of neural development, locomotor control, and ultimately life history. Our aim is to show that trabecular bone structure provides insights into ontogenetic variation in locomotor loading conditions as the product of interactions between increases in body mass and neuromuscular maturation. Our results demonstrate that age-related changes in trabecular bone volume fraction (BV/TV) are strongly and linearly associated with ontogenetic changes in locomotor kinetics. Age-related variation in locomotor kinetics and BV/TV is in turn strongly associated with brain and body size growth in all species. These results imply that age-related variation in BV/TV is a strong proxy for both locomotor kinetics and neuromuscular maturation. Finally, we show that distinct changes in the slope of age-related variation in bone volume fraction correspond to the age of the onset of locomotion and the age of locomotor maturity. Our findings compliment previous studies linking bone development to locomotor mechanics by providing a fundamental link to brain development and life history. This implies that trabecular structure of fossil subadults can be a proxy for the rate of neuromuscular maturation and major life history events like locomotor onset and the achievement of adult-like locomotor repertoires. |
doi_str_mv | 10.1073/pnas.2208772119 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9894110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27209446</jstor_id><sourcerecordid>27209446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-847b6126977038e700ae4a6034d113eb052583483dc13d964a00392142e754bb3</originalsourceid><addsrcrecordid>eNpdkUtv2zAQhImiReM8zjk1INBLLkqWD5HipUAQ9BEgQC_JmaCktS1HIh1SCuB_X9pO3DYngphvB7M7hJwzuGKgxfXau3TFOVRac8bMBzJjYFihpIGPZAbAdVFJLo_IcUorADBlBZ_JkVCyNEroGVk8RFdjM_Uu0jp4pMGPYYF-Q8fomqdEPU7R9bTFF-zDekA_Uudb2ndzpMsujSFuqBuCX9DlNDifdqoPvth96Tp2gxsxnZJPc9cnPHt9T8jjj-8Pt7-K-98_725v7otGSjHmsLpWjCujNYgKNYBD6RQI2TImsIaSl5WQlWgbJlqjpAMQhjPJUZeyrsUJ-bb3XU_1gG2T8-b4dhcjbmxwnf1f8d3SLsKLNZWRjEE2uHw1iOF5wjTaoUsN9r3zGKZkuZZK5DPyLfr1HboKU_R5vUyVJSuVNiZT13uqiSGliPNDGAZ2W6Ldlmj_lpgnLv7d4cC_tZaBL3tgtb3_Qeeag5E53h_dBKKO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755156799</pqid></control><display><type>article</type><title>Trabecular bone ontogeny tracks neural development and life history among humans and non-human primates</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Saers, Jaap P. P. ; Gordon, Adam D. ; Ryan, Timothy M. ; Stock, Jay T.</creator><creatorcontrib>Saers, Jaap P. P. ; Gordon, Adam D. ; Ryan, Timothy M. ; Stock, Jay T.</creatorcontrib><description>Trabecular bone—the spongy bone inside marrow cavities—adapts to its mechanical environment during growth and development. Trabecular structure can therefore be interpreted as a functional record of locomotor behavior in extinct vertebrates. In this paper, we expand upon traditional links between form and function by situating ontogenetic trajectories of trabecular bone in four primate species into the broader developmental context of neural development, locomotor control, and ultimately life history. Our aim is to show that trabecular bone structure provides insights into ontogenetic variation in locomotor loading conditions as the product of interactions between increases in body mass and neuromuscular maturation. Our results demonstrate that age-related changes in trabecular bone volume fraction (BV/TV) are strongly and linearly associated with ontogenetic changes in locomotor kinetics. Age-related variation in locomotor kinetics and BV/TV is in turn strongly associated with brain and body size growth in all species. These results imply that age-related variation in BV/TV is a strong proxy for both locomotor kinetics and neuromuscular maturation. Finally, we show that distinct changes in the slope of age-related variation in bone volume fraction correspond to the age of the onset of locomotion and the age of locomotor maturity. Our findings compliment previous studies linking bone development to locomotor mechanics by providing a fundamental link to brain development and life history. This implies that trabecular structure of fossil subadults can be a proxy for the rate of neuromuscular maturation and major life history events like locomotor onset and the achievement of adult-like locomotor repertoires.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2208772119</identifier><identifier>PMID: 36459637</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adult ; Age ; Animals ; Biological Sciences ; Body mass ; Body Size ; Bone marrow ; Brain ; Cancellous Bone ; Fossils ; Humans ; Kinetics ; Life history ; Locomotion ; Maturation ; Neurogenesis ; Ontogeny ; Primates ; Variation ; Vertebrates</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-12, Vol.119 (49), p.1-12</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Dec 6, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-847b6126977038e700ae4a6034d113eb052583483dc13d964a00392142e754bb3</citedby><cites>FETCH-LOGICAL-c443t-847b6126977038e700ae4a6034d113eb052583483dc13d964a00392142e754bb3</cites><orcidid>0000-0002-1807-4644 ; 0000-0003-3209-2969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894110/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894110/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36459637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saers, Jaap P. P.</creatorcontrib><creatorcontrib>Gordon, Adam D.</creatorcontrib><creatorcontrib>Ryan, Timothy M.</creatorcontrib><creatorcontrib>Stock, Jay T.</creatorcontrib><title>Trabecular bone ontogeny tracks neural development and life history among humans and non-human primates</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Trabecular bone—the spongy bone inside marrow cavities—adapts to its mechanical environment during growth and development. Trabecular structure can therefore be interpreted as a functional record of locomotor behavior in extinct vertebrates. In this paper, we expand upon traditional links between form and function by situating ontogenetic trajectories of trabecular bone in four primate species into the broader developmental context of neural development, locomotor control, and ultimately life history. Our aim is to show that trabecular bone structure provides insights into ontogenetic variation in locomotor loading conditions as the product of interactions between increases in body mass and neuromuscular maturation. Our results demonstrate that age-related changes in trabecular bone volume fraction (BV/TV) are strongly and linearly associated with ontogenetic changes in locomotor kinetics. Age-related variation in locomotor kinetics and BV/TV is in turn strongly associated with brain and body size growth in all species. These results imply that age-related variation in BV/TV is a strong proxy for both locomotor kinetics and neuromuscular maturation. Finally, we show that distinct changes in the slope of age-related variation in bone volume fraction correspond to the age of the onset of locomotion and the age of locomotor maturity. Our findings compliment previous studies linking bone development to locomotor mechanics by providing a fundamental link to brain development and life history. This implies that trabecular structure of fossil subadults can be a proxy for the rate of neuromuscular maturation and major life history events like locomotor onset and the achievement of adult-like locomotor repertoires.</description><subject>Adult</subject><subject>Age</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Body mass</subject><subject>Body Size</subject><subject>Bone marrow</subject><subject>Brain</subject><subject>Cancellous Bone</subject><subject>Fossils</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Life history</subject><subject>Locomotion</subject><subject>Maturation</subject><subject>Neurogenesis</subject><subject>Ontogeny</subject><subject>Primates</subject><subject>Variation</subject><subject>Vertebrates</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtv2zAQhImiReM8zjk1INBLLkqWD5HipUAQ9BEgQC_JmaCktS1HIh1SCuB_X9pO3DYngphvB7M7hJwzuGKgxfXau3TFOVRac8bMBzJjYFihpIGPZAbAdVFJLo_IcUorADBlBZ_JkVCyNEroGVk8RFdjM_Uu0jp4pMGPYYF-Q8fomqdEPU7R9bTFF-zDekA_Uudb2ndzpMsujSFuqBuCX9DlNDifdqoPvth96Tp2gxsxnZJPc9cnPHt9T8jjj-8Pt7-K-98_725v7otGSjHmsLpWjCujNYgKNYBD6RQI2TImsIaSl5WQlWgbJlqjpAMQhjPJUZeyrsUJ-bb3XU_1gG2T8-b4dhcjbmxwnf1f8d3SLsKLNZWRjEE2uHw1iOF5wjTaoUsN9r3zGKZkuZZK5DPyLfr1HboKU_R5vUyVJSuVNiZT13uqiSGliPNDGAZ2W6Ldlmj_lpgnLv7d4cC_tZaBL3tgtb3_Qeeag5E53h_dBKKO</recordid><startdate>20221206</startdate><enddate>20221206</enddate><creator>Saers, Jaap P. P.</creator><creator>Gordon, Adam D.</creator><creator>Ryan, Timothy M.</creator><creator>Stock, Jay T.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1807-4644</orcidid><orcidid>https://orcid.org/0000-0003-3209-2969</orcidid></search><sort><creationdate>20221206</creationdate><title>Trabecular bone ontogeny tracks neural development and life history among humans and non-human primates</title><author>Saers, Jaap P. P. ; Gordon, Adam D. ; Ryan, Timothy M. ; Stock, Jay T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-847b6126977038e700ae4a6034d113eb052583483dc13d964a00392142e754bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adult</topic><topic>Age</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Body mass</topic><topic>Body Size</topic><topic>Bone marrow</topic><topic>Brain</topic><topic>Cancellous Bone</topic><topic>Fossils</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Life history</topic><topic>Locomotion</topic><topic>Maturation</topic><topic>Neurogenesis</topic><topic>Ontogeny</topic><topic>Primates</topic><topic>Variation</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saers, Jaap P. P.</creatorcontrib><creatorcontrib>Gordon, Adam D.</creatorcontrib><creatorcontrib>Ryan, Timothy M.</creatorcontrib><creatorcontrib>Stock, Jay T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saers, Jaap P. P.</au><au>Gordon, Adam D.</au><au>Ryan, Timothy M.</au><au>Stock, Jay T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trabecular bone ontogeny tracks neural development and life history among humans and non-human primates</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-12-06</date><risdate>2022</risdate><volume>119</volume><issue>49</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Trabecular bone—the spongy bone inside marrow cavities—adapts to its mechanical environment during growth and development. Trabecular structure can therefore be interpreted as a functional record of locomotor behavior in extinct vertebrates. In this paper, we expand upon traditional links between form and function by situating ontogenetic trajectories of trabecular bone in four primate species into the broader developmental context of neural development, locomotor control, and ultimately life history. Our aim is to show that trabecular bone structure provides insights into ontogenetic variation in locomotor loading conditions as the product of interactions between increases in body mass and neuromuscular maturation. Our results demonstrate that age-related changes in trabecular bone volume fraction (BV/TV) are strongly and linearly associated with ontogenetic changes in locomotor kinetics. Age-related variation in locomotor kinetics and BV/TV is in turn strongly associated with brain and body size growth in all species. These results imply that age-related variation in BV/TV is a strong proxy for both locomotor kinetics and neuromuscular maturation. Finally, we show that distinct changes in the slope of age-related variation in bone volume fraction correspond to the age of the onset of locomotion and the age of locomotor maturity. Our findings compliment previous studies linking bone development to locomotor mechanics by providing a fundamental link to brain development and life history. This implies that trabecular structure of fossil subadults can be a proxy for the rate of neuromuscular maturation and major life history events like locomotor onset and the achievement of adult-like locomotor repertoires.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36459637</pmid><doi>10.1073/pnas.2208772119</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1807-4644</orcidid><orcidid>https://orcid.org/0000-0003-3209-2969</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-12, Vol.119 (49), p.1-12 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9894110 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adult Age Animals Biological Sciences Body mass Body Size Bone marrow Brain Cancellous Bone Fossils Humans Kinetics Life history Locomotion Maturation Neurogenesis Ontogeny Primates Variation Vertebrates |
title | Trabecular bone ontogeny tracks neural development and life history among humans and non-human primates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trabecular%20bone%20ontogeny%20tracks%20neural%20development%20and%20life%20history%20among%20humans%20and%20non-human%20primates&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Saers,%20Jaap%20P.%20P.&rft.date=2022-12-06&rft.volume=119&rft.issue=49&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2208772119&rft_dat=%3Cjstor_pubme%3E27209446%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755156799&rft_id=info:pmid/36459637&rft_jstor_id=27209446&rfr_iscdi=true |