Trabecular bone ontogeny tracks neural development and life history among humans and non-human primates

Trabecular bone—the spongy bone inside marrow cavities—adapts to its mechanical environment during growth and development. Trabecular structure can therefore be interpreted as a functional record of locomotor behavior in extinct vertebrates. In this paper, we expand upon traditional links between fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2022-12, Vol.119 (49), p.1-12
Hauptverfasser: Saers, Jaap P. P., Gordon, Adam D., Ryan, Timothy M., Stock, Jay T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 49
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator Saers, Jaap P. P.
Gordon, Adam D.
Ryan, Timothy M.
Stock, Jay T.
description Trabecular bone—the spongy bone inside marrow cavities—adapts to its mechanical environment during growth and development. Trabecular structure can therefore be interpreted as a functional record of locomotor behavior in extinct vertebrates. In this paper, we expand upon traditional links between form and function by situating ontogenetic trajectories of trabecular bone in four primate species into the broader developmental context of neural development, locomotor control, and ultimately life history. Our aim is to show that trabecular bone structure provides insights into ontogenetic variation in locomotor loading conditions as the product of interactions between increases in body mass and neuromuscular maturation. Our results demonstrate that age-related changes in trabecular bone volume fraction (BV/TV) are strongly and linearly associated with ontogenetic changes in locomotor kinetics. Age-related variation in locomotor kinetics and BV/TV is in turn strongly associated with brain and body size growth in all species. These results imply that age-related variation in BV/TV is a strong proxy for both locomotor kinetics and neuromuscular maturation. Finally, we show that distinct changes in the slope of age-related variation in bone volume fraction correspond to the age of the onset of locomotion and the age of locomotor maturity. Our findings compliment previous studies linking bone development to locomotor mechanics by providing a fundamental link to brain development and life history. This implies that trabecular structure of fossil subadults can be a proxy for the rate of neuromuscular maturation and major life history events like locomotor onset and the achievement of adult-like locomotor repertoires.
doi_str_mv 10.1073/pnas.2208772119
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9894110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27209446</jstor_id><sourcerecordid>27209446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-847b6126977038e700ae4a6034d113eb052583483dc13d964a00392142e754bb3</originalsourceid><addsrcrecordid>eNpdkUtv2zAQhImiReM8zjk1INBLLkqWD5HipUAQ9BEgQC_JmaCktS1HIh1SCuB_X9pO3DYngphvB7M7hJwzuGKgxfXau3TFOVRac8bMBzJjYFihpIGPZAbAdVFJLo_IcUorADBlBZ_JkVCyNEroGVk8RFdjM_Uu0jp4pMGPYYF-Q8fomqdEPU7R9bTFF-zDekA_Uudb2ndzpMsujSFuqBuCX9DlNDifdqoPvth96Tp2gxsxnZJPc9cnPHt9T8jjj-8Pt7-K-98_725v7otGSjHmsLpWjCujNYgKNYBD6RQI2TImsIaSl5WQlWgbJlqjpAMQhjPJUZeyrsUJ-bb3XU_1gG2T8-b4dhcjbmxwnf1f8d3SLsKLNZWRjEE2uHw1iOF5wjTaoUsN9r3zGKZkuZZK5DPyLfr1HboKU_R5vUyVJSuVNiZT13uqiSGliPNDGAZ2W6Ldlmj_lpgnLv7d4cC_tZaBL3tgtb3_Qeeag5E53h_dBKKO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755156799</pqid></control><display><type>article</type><title>Trabecular bone ontogeny tracks neural development and life history among humans and non-human primates</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Saers, Jaap P. P. ; Gordon, Adam D. ; Ryan, Timothy M. ; Stock, Jay T.</creator><creatorcontrib>Saers, Jaap P. P. ; Gordon, Adam D. ; Ryan, Timothy M. ; Stock, Jay T.</creatorcontrib><description>Trabecular bone—the spongy bone inside marrow cavities—adapts to its mechanical environment during growth and development. Trabecular structure can therefore be interpreted as a functional record of locomotor behavior in extinct vertebrates. In this paper, we expand upon traditional links between form and function by situating ontogenetic trajectories of trabecular bone in four primate species into the broader developmental context of neural development, locomotor control, and ultimately life history. Our aim is to show that trabecular bone structure provides insights into ontogenetic variation in locomotor loading conditions as the product of interactions between increases in body mass and neuromuscular maturation. Our results demonstrate that age-related changes in trabecular bone volume fraction (BV/TV) are strongly and linearly associated with ontogenetic changes in locomotor kinetics. Age-related variation in locomotor kinetics and BV/TV is in turn strongly associated with brain and body size growth in all species. These results imply that age-related variation in BV/TV is a strong proxy for both locomotor kinetics and neuromuscular maturation. Finally, we show that distinct changes in the slope of age-related variation in bone volume fraction correspond to the age of the onset of locomotion and the age of locomotor maturity. Our findings compliment previous studies linking bone development to locomotor mechanics by providing a fundamental link to brain development and life history. This implies that trabecular structure of fossil subadults can be a proxy for the rate of neuromuscular maturation and major life history events like locomotor onset and the achievement of adult-like locomotor repertoires.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2208772119</identifier><identifier>PMID: 36459637</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adult ; Age ; Animals ; Biological Sciences ; Body mass ; Body Size ; Bone marrow ; Brain ; Cancellous Bone ; Fossils ; Humans ; Kinetics ; Life history ; Locomotion ; Maturation ; Neurogenesis ; Ontogeny ; Primates ; Variation ; Vertebrates</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-12, Vol.119 (49), p.1-12</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Dec 6, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-847b6126977038e700ae4a6034d113eb052583483dc13d964a00392142e754bb3</citedby><cites>FETCH-LOGICAL-c443t-847b6126977038e700ae4a6034d113eb052583483dc13d964a00392142e754bb3</cites><orcidid>0000-0002-1807-4644 ; 0000-0003-3209-2969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894110/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894110/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36459637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saers, Jaap P. P.</creatorcontrib><creatorcontrib>Gordon, Adam D.</creatorcontrib><creatorcontrib>Ryan, Timothy M.</creatorcontrib><creatorcontrib>Stock, Jay T.</creatorcontrib><title>Trabecular bone ontogeny tracks neural development and life history among humans and non-human primates</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Trabecular bone—the spongy bone inside marrow cavities—adapts to its mechanical environment during growth and development. Trabecular structure can therefore be interpreted as a functional record of locomotor behavior in extinct vertebrates. In this paper, we expand upon traditional links between form and function by situating ontogenetic trajectories of trabecular bone in four primate species into the broader developmental context of neural development, locomotor control, and ultimately life history. Our aim is to show that trabecular bone structure provides insights into ontogenetic variation in locomotor loading conditions as the product of interactions between increases in body mass and neuromuscular maturation. Our results demonstrate that age-related changes in trabecular bone volume fraction (BV/TV) are strongly and linearly associated with ontogenetic changes in locomotor kinetics. Age-related variation in locomotor kinetics and BV/TV is in turn strongly associated with brain and body size growth in all species. These results imply that age-related variation in BV/TV is a strong proxy for both locomotor kinetics and neuromuscular maturation. Finally, we show that distinct changes in the slope of age-related variation in bone volume fraction correspond to the age of the onset of locomotion and the age of locomotor maturity. Our findings compliment previous studies linking bone development to locomotor mechanics by providing a fundamental link to brain development and life history. This implies that trabecular structure of fossil subadults can be a proxy for the rate of neuromuscular maturation and major life history events like locomotor onset and the achievement of adult-like locomotor repertoires.</description><subject>Adult</subject><subject>Age</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Body mass</subject><subject>Body Size</subject><subject>Bone marrow</subject><subject>Brain</subject><subject>Cancellous Bone</subject><subject>Fossils</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Life history</subject><subject>Locomotion</subject><subject>Maturation</subject><subject>Neurogenesis</subject><subject>Ontogeny</subject><subject>Primates</subject><subject>Variation</subject><subject>Vertebrates</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtv2zAQhImiReM8zjk1INBLLkqWD5HipUAQ9BEgQC_JmaCktS1HIh1SCuB_X9pO3DYngphvB7M7hJwzuGKgxfXau3TFOVRac8bMBzJjYFihpIGPZAbAdVFJLo_IcUorADBlBZ_JkVCyNEroGVk8RFdjM_Uu0jp4pMGPYYF-Q8fomqdEPU7R9bTFF-zDekA_Uudb2ndzpMsujSFuqBuCX9DlNDifdqoPvth96Tp2gxsxnZJPc9cnPHt9T8jjj-8Pt7-K-98_725v7otGSjHmsLpWjCujNYgKNYBD6RQI2TImsIaSl5WQlWgbJlqjpAMQhjPJUZeyrsUJ-bb3XU_1gG2T8-b4dhcjbmxwnf1f8d3SLsKLNZWRjEE2uHw1iOF5wjTaoUsN9r3zGKZkuZZK5DPyLfr1HboKU_R5vUyVJSuVNiZT13uqiSGliPNDGAZ2W6Ldlmj_lpgnLv7d4cC_tZaBL3tgtb3_Qeeag5E53h_dBKKO</recordid><startdate>20221206</startdate><enddate>20221206</enddate><creator>Saers, Jaap P. P.</creator><creator>Gordon, Adam D.</creator><creator>Ryan, Timothy M.</creator><creator>Stock, Jay T.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1807-4644</orcidid><orcidid>https://orcid.org/0000-0003-3209-2969</orcidid></search><sort><creationdate>20221206</creationdate><title>Trabecular bone ontogeny tracks neural development and life history among humans and non-human primates</title><author>Saers, Jaap P. P. ; Gordon, Adam D. ; Ryan, Timothy M. ; Stock, Jay T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-847b6126977038e700ae4a6034d113eb052583483dc13d964a00392142e754bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adult</topic><topic>Age</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Body mass</topic><topic>Body Size</topic><topic>Bone marrow</topic><topic>Brain</topic><topic>Cancellous Bone</topic><topic>Fossils</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Life history</topic><topic>Locomotion</topic><topic>Maturation</topic><topic>Neurogenesis</topic><topic>Ontogeny</topic><topic>Primates</topic><topic>Variation</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saers, Jaap P. P.</creatorcontrib><creatorcontrib>Gordon, Adam D.</creatorcontrib><creatorcontrib>Ryan, Timothy M.</creatorcontrib><creatorcontrib>Stock, Jay T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saers, Jaap P. P.</au><au>Gordon, Adam D.</au><au>Ryan, Timothy M.</au><au>Stock, Jay T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trabecular bone ontogeny tracks neural development and life history among humans and non-human primates</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-12-06</date><risdate>2022</risdate><volume>119</volume><issue>49</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Trabecular bone—the spongy bone inside marrow cavities—adapts to its mechanical environment during growth and development. Trabecular structure can therefore be interpreted as a functional record of locomotor behavior in extinct vertebrates. In this paper, we expand upon traditional links between form and function by situating ontogenetic trajectories of trabecular bone in four primate species into the broader developmental context of neural development, locomotor control, and ultimately life history. Our aim is to show that trabecular bone structure provides insights into ontogenetic variation in locomotor loading conditions as the product of interactions between increases in body mass and neuromuscular maturation. Our results demonstrate that age-related changes in trabecular bone volume fraction (BV/TV) are strongly and linearly associated with ontogenetic changes in locomotor kinetics. Age-related variation in locomotor kinetics and BV/TV is in turn strongly associated with brain and body size growth in all species. These results imply that age-related variation in BV/TV is a strong proxy for both locomotor kinetics and neuromuscular maturation. Finally, we show that distinct changes in the slope of age-related variation in bone volume fraction correspond to the age of the onset of locomotion and the age of locomotor maturity. Our findings compliment previous studies linking bone development to locomotor mechanics by providing a fundamental link to brain development and life history. This implies that trabecular structure of fossil subadults can be a proxy for the rate of neuromuscular maturation and major life history events like locomotor onset and the achievement of adult-like locomotor repertoires.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36459637</pmid><doi>10.1073/pnas.2208772119</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1807-4644</orcidid><orcidid>https://orcid.org/0000-0003-3209-2969</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-12, Vol.119 (49), p.1-12
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9894110
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adult
Age
Animals
Biological Sciences
Body mass
Body Size
Bone marrow
Brain
Cancellous Bone
Fossils
Humans
Kinetics
Life history
Locomotion
Maturation
Neurogenesis
Ontogeny
Primates
Variation
Vertebrates
title Trabecular bone ontogeny tracks neural development and life history among humans and non-human primates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trabecular%20bone%20ontogeny%20tracks%20neural%20development%20and%20life%20history%20among%20humans%20and%20non-human%20primates&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Saers,%20Jaap%20P.%20P.&rft.date=2022-12-06&rft.volume=119&rft.issue=49&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2208772119&rft_dat=%3Cjstor_pubme%3E27209446%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755156799&rft_id=info:pmid/36459637&rft_jstor_id=27209446&rfr_iscdi=true