Cytosolic aldose metabolism contributes to progression from cirrhosis to hepatocarcinogenesis
Oxidative stress modulates carcinogenesis in the liver; however, direct evidence for metabolic control of oxidative stress during pathogenesis, particularly, of progression from cirrhosis to hepatocellular carcinoma (HCC), has been lacking. Deficiency of transaldolase (TAL), a rate-limiting enzyme o...
Gespeichert in:
Veröffentlicht in: | Nature metabolism 2023-01, Vol.5 (1), p.41-60 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | 1 |
container_start_page | 41 |
container_title | Nature metabolism |
container_volume | 5 |
creator | Oaks, Z. Patel, A. Huang, N. Choudhary, G. Winans, T. Faludi, T. Krakko, D. Duarte, M. Lewis, J. Beckford, M. Blair, S. Kelly, R. Landas, S. K. Middleton, F. A. Asara, J. M. Chung, S. K. Fernandez, D. R. Banki, K. Perl, A. |
description | Oxidative stress modulates carcinogenesis in the liver; however, direct evidence for metabolic control of oxidative stress during pathogenesis, particularly, of progression from cirrhosis to hepatocellular carcinoma (HCC), has been lacking. Deficiency of transaldolase (TAL), a rate-limiting enzyme of the non-oxidative branch of the pentose phosphate pathway (PPP), restricts growth and predisposes to cirrhosis and HCC in mice and humans. Here, we show that mitochondrial oxidative stress and progression from cirrhosis to HCC and acetaminophen-induced liver necrosis are critically dependent on NADPH depletion and polyol buildup by aldose reductase (AR), while this enzyme protects from carbon trapping in the PPP and growth restriction in TAL deficiency. Both TAL and AR are confined to the cytosol; however, their inactivation distorts mitochondrial redox homeostasis in opposite directions. The results suggest that AR acts as a rheostat of carbon recycling and NADPH output of the PPP with broad implications for disease progression from cirrhosis to HCC.
In this study, Oaks and Patel et al. characterize the crosstalk between the pentose phosphate pathway and mitochondrial redox homeostasis in the context of aldose reductase and transaldolase deficiency and the contribution of pentose phosphate pathway mitochondria deregulation to the progression from cirrhosis to hepatocellular carcinoma. |
doi_str_mv | 10.1038/s42255-022-00711-9 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9892301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36658399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-d8a1cf7e824fb007e579be89f1d89aedda933944044d3e842478338fa812cf4d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EohX0B1ig_EDArzT2BglVvKRKbGCJLMcZp66SuLJTpP49poGqbFjZvnfmjucgdEXwDcFM3EZOaVHkmNIc45KQXJ6gKS3SsxCEnh7dJ2gW4xpjTAnhhMpzNGHzeSGYlFP0sdgNPvrWmUy3tY-QdTDoKgmxy4zvh-Cq7QAxG3y2Cb4JEKPzfWaDT74LYeWj27sr2OjBGx2M630DPST9Ep1Z3UaY_ZwX6P3x4W3xnC9fn14W98vccD4f8lpoYmwJgnJbpW2gKGUFQlpSC6mhrrVkTHKOOa8ZCE55KRgTVqftjE3aBbobczfbqoPaQPq3btUmuE6HnfLaqb9O71aq8Z9KCkkZJimAjgEm-BgD2EMvweqbtxp5q8Rb7XkrmZquj6ceWn7ppgI2FsRk9Q0Etfbb0CcS_8V-ASZ7j28</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cytosolic aldose metabolism contributes to progression from cirrhosis to hepatocarcinogenesis</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Oaks, Z. ; Patel, A. ; Huang, N. ; Choudhary, G. ; Winans, T. ; Faludi, T. ; Krakko, D. ; Duarte, M. ; Lewis, J. ; Beckford, M. ; Blair, S. ; Kelly, R. ; Landas, S. K. ; Middleton, F. A. ; Asara, J. M. ; Chung, S. K. ; Fernandez, D. R. ; Banki, K. ; Perl, A.</creator><creatorcontrib>Oaks, Z. ; Patel, A. ; Huang, N. ; Choudhary, G. ; Winans, T. ; Faludi, T. ; Krakko, D. ; Duarte, M. ; Lewis, J. ; Beckford, M. ; Blair, S. ; Kelly, R. ; Landas, S. K. ; Middleton, F. A. ; Asara, J. M. ; Chung, S. K. ; Fernandez, D. R. ; Banki, K. ; Perl, A.</creatorcontrib><description>Oxidative stress modulates carcinogenesis in the liver; however, direct evidence for metabolic control of oxidative stress during pathogenesis, particularly, of progression from cirrhosis to hepatocellular carcinoma (HCC), has been lacking. Deficiency of transaldolase (TAL), a rate-limiting enzyme of the non-oxidative branch of the pentose phosphate pathway (PPP), restricts growth and predisposes to cirrhosis and HCC in mice and humans. Here, we show that mitochondrial oxidative stress and progression from cirrhosis to HCC and acetaminophen-induced liver necrosis are critically dependent on NADPH depletion and polyol buildup by aldose reductase (AR), while this enzyme protects from carbon trapping in the PPP and growth restriction in TAL deficiency. Both TAL and AR are confined to the cytosol; however, their inactivation distorts mitochondrial redox homeostasis in opposite directions. The results suggest that AR acts as a rheostat of carbon recycling and NADPH output of the PPP with broad implications for disease progression from cirrhosis to HCC.
In this study, Oaks and Patel et al. characterize the crosstalk between the pentose phosphate pathway and mitochondrial redox homeostasis in the context of aldose reductase and transaldolase deficiency and the contribution of pentose phosphate pathway mitochondria deregulation to the progression from cirrhosis to hepatocellular carcinoma.</description><identifier>ISSN: 2522-5812</identifier><identifier>EISSN: 2522-5812</identifier><identifier>DOI: 10.1038/s42255-022-00711-9</identifier><identifier>PMID: 36658399</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/109 ; 13/31 ; 13/89 ; 14/63 ; 38/91 ; 45/90 ; 631/443/319 ; 631/45/320 ; 631/67/2327 ; 64/110 ; 64/60 ; 692/420/755 ; Animals ; Biomedical and Life Sciences ; Carcinogenesis - pathology ; Carcinoma, Hepatocellular - pathology ; Cytosol - pathology ; Humans ; Life Sciences ; Liver Cirrhosis - pathology ; Liver Neoplasms - pathology ; Mice ; NADP</subject><ispartof>Nature metabolism, 2023-01, Vol.5 (1), p.41-60</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-d8a1cf7e824fb007e579be89f1d89aedda933944044d3e842478338fa812cf4d3</citedby><cites>FETCH-LOGICAL-c446t-d8a1cf7e824fb007e579be89f1d89aedda933944044d3e842478338fa812cf4d3</cites><orcidid>0000-0002-8147-0498 ; 0000-0003-1552-7377 ; 0000-0002-5017-1348 ; 0000-0002-9009-4180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42255-022-00711-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s42255-022-00711-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36658399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oaks, Z.</creatorcontrib><creatorcontrib>Patel, A.</creatorcontrib><creatorcontrib>Huang, N.</creatorcontrib><creatorcontrib>Choudhary, G.</creatorcontrib><creatorcontrib>Winans, T.</creatorcontrib><creatorcontrib>Faludi, T.</creatorcontrib><creatorcontrib>Krakko, D.</creatorcontrib><creatorcontrib>Duarte, M.</creatorcontrib><creatorcontrib>Lewis, J.</creatorcontrib><creatorcontrib>Beckford, M.</creatorcontrib><creatorcontrib>Blair, S.</creatorcontrib><creatorcontrib>Kelly, R.</creatorcontrib><creatorcontrib>Landas, S. K.</creatorcontrib><creatorcontrib>Middleton, F. A.</creatorcontrib><creatorcontrib>Asara, J. M.</creatorcontrib><creatorcontrib>Chung, S. K.</creatorcontrib><creatorcontrib>Fernandez, D. R.</creatorcontrib><creatorcontrib>Banki, K.</creatorcontrib><creatorcontrib>Perl, A.</creatorcontrib><title>Cytosolic aldose metabolism contributes to progression from cirrhosis to hepatocarcinogenesis</title><title>Nature metabolism</title><addtitle>Nat Metab</addtitle><addtitle>Nat Metab</addtitle><description>Oxidative stress modulates carcinogenesis in the liver; however, direct evidence for metabolic control of oxidative stress during pathogenesis, particularly, of progression from cirrhosis to hepatocellular carcinoma (HCC), has been lacking. Deficiency of transaldolase (TAL), a rate-limiting enzyme of the non-oxidative branch of the pentose phosphate pathway (PPP), restricts growth and predisposes to cirrhosis and HCC in mice and humans. Here, we show that mitochondrial oxidative stress and progression from cirrhosis to HCC and acetaminophen-induced liver necrosis are critically dependent on NADPH depletion and polyol buildup by aldose reductase (AR), while this enzyme protects from carbon trapping in the PPP and growth restriction in TAL deficiency. Both TAL and AR are confined to the cytosol; however, their inactivation distorts mitochondrial redox homeostasis in opposite directions. The results suggest that AR acts as a rheostat of carbon recycling and NADPH output of the PPP with broad implications for disease progression from cirrhosis to HCC.
In this study, Oaks and Patel et al. characterize the crosstalk between the pentose phosphate pathway and mitochondrial redox homeostasis in the context of aldose reductase and transaldolase deficiency and the contribution of pentose phosphate pathway mitochondria deregulation to the progression from cirrhosis to hepatocellular carcinoma.</description><subject>13/106</subject><subject>13/109</subject><subject>13/31</subject><subject>13/89</subject><subject>14/63</subject><subject>38/91</subject><subject>45/90</subject><subject>631/443/319</subject><subject>631/45/320</subject><subject>631/67/2327</subject><subject>64/110</subject><subject>64/60</subject><subject>692/420/755</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Carcinogenesis - pathology</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Cytosol - pathology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Liver Cirrhosis - pathology</subject><subject>Liver Neoplasms - pathology</subject><subject>Mice</subject><subject>NADP</subject><issn>2522-5812</issn><issn>2522-5812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EohX0B1ig_EDArzT2BglVvKRKbGCJLMcZp66SuLJTpP49poGqbFjZvnfmjucgdEXwDcFM3EZOaVHkmNIc45KQXJ6gKS3SsxCEnh7dJ2gW4xpjTAnhhMpzNGHzeSGYlFP0sdgNPvrWmUy3tY-QdTDoKgmxy4zvh-Cq7QAxG3y2Cb4JEKPzfWaDT74LYeWj27sr2OjBGx2M630DPST9Ep1Z3UaY_ZwX6P3x4W3xnC9fn14W98vccD4f8lpoYmwJgnJbpW2gKGUFQlpSC6mhrrVkTHKOOa8ZCE55KRgTVqftjE3aBbobczfbqoPaQPq3btUmuE6HnfLaqb9O71aq8Z9KCkkZJimAjgEm-BgD2EMvweqbtxp5q8Rb7XkrmZquj6ceWn7ppgI2FsRk9Q0Etfbb0CcS_8V-ASZ7j28</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Oaks, Z.</creator><creator>Patel, A.</creator><creator>Huang, N.</creator><creator>Choudhary, G.</creator><creator>Winans, T.</creator><creator>Faludi, T.</creator><creator>Krakko, D.</creator><creator>Duarte, M.</creator><creator>Lewis, J.</creator><creator>Beckford, M.</creator><creator>Blair, S.</creator><creator>Kelly, R.</creator><creator>Landas, S. K.</creator><creator>Middleton, F. A.</creator><creator>Asara, J. M.</creator><creator>Chung, S. K.</creator><creator>Fernandez, D. R.</creator><creator>Banki, K.</creator><creator>Perl, A.</creator><general>Nature Publishing Group UK</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8147-0498</orcidid><orcidid>https://orcid.org/0000-0003-1552-7377</orcidid><orcidid>https://orcid.org/0000-0002-5017-1348</orcidid><orcidid>https://orcid.org/0000-0002-9009-4180</orcidid></search><sort><creationdate>20230101</creationdate><title>Cytosolic aldose metabolism contributes to progression from cirrhosis to hepatocarcinogenesis</title><author>Oaks, Z. ; Patel, A. ; Huang, N. ; Choudhary, G. ; Winans, T. ; Faludi, T. ; Krakko, D. ; Duarte, M. ; Lewis, J. ; Beckford, M. ; Blair, S. ; Kelly, R. ; Landas, S. K. ; Middleton, F. A. ; Asara, J. M. ; Chung, S. K. ; Fernandez, D. R. ; Banki, K. ; Perl, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-d8a1cf7e824fb007e579be89f1d89aedda933944044d3e842478338fa812cf4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>13/106</topic><topic>13/109</topic><topic>13/31</topic><topic>13/89</topic><topic>14/63</topic><topic>38/91</topic><topic>45/90</topic><topic>631/443/319</topic><topic>631/45/320</topic><topic>631/67/2327</topic><topic>64/110</topic><topic>64/60</topic><topic>692/420/755</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Carcinogenesis - pathology</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Cytosol - pathology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Liver Cirrhosis - pathology</topic><topic>Liver Neoplasms - pathology</topic><topic>Mice</topic><topic>NADP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oaks, Z.</creatorcontrib><creatorcontrib>Patel, A.</creatorcontrib><creatorcontrib>Huang, N.</creatorcontrib><creatorcontrib>Choudhary, G.</creatorcontrib><creatorcontrib>Winans, T.</creatorcontrib><creatorcontrib>Faludi, T.</creatorcontrib><creatorcontrib>Krakko, D.</creatorcontrib><creatorcontrib>Duarte, M.</creatorcontrib><creatorcontrib>Lewis, J.</creatorcontrib><creatorcontrib>Beckford, M.</creatorcontrib><creatorcontrib>Blair, S.</creatorcontrib><creatorcontrib>Kelly, R.</creatorcontrib><creatorcontrib>Landas, S. K.</creatorcontrib><creatorcontrib>Middleton, F. A.</creatorcontrib><creatorcontrib>Asara, J. M.</creatorcontrib><creatorcontrib>Chung, S. K.</creatorcontrib><creatorcontrib>Fernandez, D. R.</creatorcontrib><creatorcontrib>Banki, K.</creatorcontrib><creatorcontrib>Perl, A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oaks, Z.</au><au>Patel, A.</au><au>Huang, N.</au><au>Choudhary, G.</au><au>Winans, T.</au><au>Faludi, T.</au><au>Krakko, D.</au><au>Duarte, M.</au><au>Lewis, J.</au><au>Beckford, M.</au><au>Blair, S.</au><au>Kelly, R.</au><au>Landas, S. K.</au><au>Middleton, F. A.</au><au>Asara, J. M.</au><au>Chung, S. K.</au><au>Fernandez, D. R.</au><au>Banki, K.</au><au>Perl, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytosolic aldose metabolism contributes to progression from cirrhosis to hepatocarcinogenesis</atitle><jtitle>Nature metabolism</jtitle><stitle>Nat Metab</stitle><addtitle>Nat Metab</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>5</volume><issue>1</issue><spage>41</spage><epage>60</epage><pages>41-60</pages><issn>2522-5812</issn><eissn>2522-5812</eissn><abstract>Oxidative stress modulates carcinogenesis in the liver; however, direct evidence for metabolic control of oxidative stress during pathogenesis, particularly, of progression from cirrhosis to hepatocellular carcinoma (HCC), has been lacking. Deficiency of transaldolase (TAL), a rate-limiting enzyme of the non-oxidative branch of the pentose phosphate pathway (PPP), restricts growth and predisposes to cirrhosis and HCC in mice and humans. Here, we show that mitochondrial oxidative stress and progression from cirrhosis to HCC and acetaminophen-induced liver necrosis are critically dependent on NADPH depletion and polyol buildup by aldose reductase (AR), while this enzyme protects from carbon trapping in the PPP and growth restriction in TAL deficiency. Both TAL and AR are confined to the cytosol; however, their inactivation distorts mitochondrial redox homeostasis in opposite directions. The results suggest that AR acts as a rheostat of carbon recycling and NADPH output of the PPP with broad implications for disease progression from cirrhosis to HCC.
In this study, Oaks and Patel et al. characterize the crosstalk between the pentose phosphate pathway and mitochondrial redox homeostasis in the context of aldose reductase and transaldolase deficiency and the contribution of pentose phosphate pathway mitochondria deregulation to the progression from cirrhosis to hepatocellular carcinoma.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36658399</pmid><doi>10.1038/s42255-022-00711-9</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-8147-0498</orcidid><orcidid>https://orcid.org/0000-0003-1552-7377</orcidid><orcidid>https://orcid.org/0000-0002-5017-1348</orcidid><orcidid>https://orcid.org/0000-0002-9009-4180</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2522-5812 |
ispartof | Nature metabolism, 2023-01, Vol.5 (1), p.41-60 |
issn | 2522-5812 2522-5812 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9892301 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 13/106 13/109 13/31 13/89 14/63 38/91 45/90 631/443/319 631/45/320 631/67/2327 64/110 64/60 692/420/755 Animals Biomedical and Life Sciences Carcinogenesis - pathology Carcinoma, Hepatocellular - pathology Cytosol - pathology Humans Life Sciences Liver Cirrhosis - pathology Liver Neoplasms - pathology Mice NADP |
title | Cytosolic aldose metabolism contributes to progression from cirrhosis to hepatocarcinogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytosolic%20aldose%20metabolism%20contributes%20to%20progression%20from%20cirrhosis%20to%20hepatocarcinogenesis&rft.jtitle=Nature%20metabolism&rft.au=Oaks,%20Z.&rft.date=2023-01-01&rft.volume=5&rft.issue=1&rft.spage=41&rft.epage=60&rft.pages=41-60&rft.issn=2522-5812&rft.eissn=2522-5812&rft_id=info:doi/10.1038/s42255-022-00711-9&rft_dat=%3Cpubmed_cross%3E36658399%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36658399&rfr_iscdi=true |