Cytosolic aldose metabolism contributes to progression from cirrhosis to hepatocarcinogenesis

Oxidative stress modulates carcinogenesis in the liver; however, direct evidence for metabolic control of oxidative stress during pathogenesis, particularly, of progression from cirrhosis to hepatocellular carcinoma (HCC), has been lacking. Deficiency of transaldolase (TAL), a rate-limiting enzyme o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature metabolism 2023-01, Vol.5 (1), p.41-60
Hauptverfasser: Oaks, Z., Patel, A., Huang, N., Choudhary, G., Winans, T., Faludi, T., Krakko, D., Duarte, M., Lewis, J., Beckford, M., Blair, S., Kelly, R., Landas, S. K., Middleton, F. A., Asara, J. M., Chung, S. K., Fernandez, D. R., Banki, K., Perl, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 41
container_title Nature metabolism
container_volume 5
creator Oaks, Z.
Patel, A.
Huang, N.
Choudhary, G.
Winans, T.
Faludi, T.
Krakko, D.
Duarte, M.
Lewis, J.
Beckford, M.
Blair, S.
Kelly, R.
Landas, S. K.
Middleton, F. A.
Asara, J. M.
Chung, S. K.
Fernandez, D. R.
Banki, K.
Perl, A.
description Oxidative stress modulates carcinogenesis in the liver; however, direct evidence for metabolic control of oxidative stress during pathogenesis, particularly, of progression from cirrhosis to hepatocellular carcinoma (HCC), has been lacking. Deficiency of transaldolase (TAL), a rate-limiting enzyme of the non-oxidative branch of the pentose phosphate pathway (PPP), restricts growth and predisposes to cirrhosis and HCC in mice and humans. Here, we show that mitochondrial oxidative stress and progression from cirrhosis to HCC and acetaminophen-induced liver necrosis are critically dependent on NADPH depletion and polyol buildup by aldose reductase (AR), while this enzyme protects from carbon trapping in the PPP and growth restriction in TAL deficiency. Both TAL and AR are confined to the cytosol; however, their inactivation distorts mitochondrial redox homeostasis in opposite directions. The results suggest that AR acts as a rheostat of carbon recycling and NADPH output of the PPP with broad implications for disease progression from cirrhosis to HCC. In this study, Oaks and Patel et al. characterize the crosstalk between the pentose phosphate pathway and mitochondrial redox homeostasis in the context of aldose reductase and transaldolase deficiency and the contribution of pentose phosphate pathway mitochondria deregulation to the progression from cirrhosis to hepatocellular carcinoma.
doi_str_mv 10.1038/s42255-022-00711-9
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9892301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36658399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-d8a1cf7e824fb007e579be89f1d89aedda933944044d3e842478338fa812cf4d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EohX0B1ig_EDArzT2BglVvKRKbGCJLMcZp66SuLJTpP49poGqbFjZvnfmjucgdEXwDcFM3EZOaVHkmNIc45KQXJ6gKS3SsxCEnh7dJ2gW4xpjTAnhhMpzNGHzeSGYlFP0sdgNPvrWmUy3tY-QdTDoKgmxy4zvh-Cq7QAxG3y2Cb4JEKPzfWaDT74LYeWj27sr2OjBGx2M630DPST9Ep1Z3UaY_ZwX6P3x4W3xnC9fn14W98vccD4f8lpoYmwJgnJbpW2gKGUFQlpSC6mhrrVkTHKOOa8ZCE55KRgTVqftjE3aBbobczfbqoPaQPq3btUmuE6HnfLaqb9O71aq8Z9KCkkZJimAjgEm-BgD2EMvweqbtxp5q8Rb7XkrmZquj6ceWn7ppgI2FsRk9Q0Etfbb0CcS_8V-ASZ7j28</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cytosolic aldose metabolism contributes to progression from cirrhosis to hepatocarcinogenesis</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Oaks, Z. ; Patel, A. ; Huang, N. ; Choudhary, G. ; Winans, T. ; Faludi, T. ; Krakko, D. ; Duarte, M. ; Lewis, J. ; Beckford, M. ; Blair, S. ; Kelly, R. ; Landas, S. K. ; Middleton, F. A. ; Asara, J. M. ; Chung, S. K. ; Fernandez, D. R. ; Banki, K. ; Perl, A.</creator><creatorcontrib>Oaks, Z. ; Patel, A. ; Huang, N. ; Choudhary, G. ; Winans, T. ; Faludi, T. ; Krakko, D. ; Duarte, M. ; Lewis, J. ; Beckford, M. ; Blair, S. ; Kelly, R. ; Landas, S. K. ; Middleton, F. A. ; Asara, J. M. ; Chung, S. K. ; Fernandez, D. R. ; Banki, K. ; Perl, A.</creatorcontrib><description>Oxidative stress modulates carcinogenesis in the liver; however, direct evidence for metabolic control of oxidative stress during pathogenesis, particularly, of progression from cirrhosis to hepatocellular carcinoma (HCC), has been lacking. Deficiency of transaldolase (TAL), a rate-limiting enzyme of the non-oxidative branch of the pentose phosphate pathway (PPP), restricts growth and predisposes to cirrhosis and HCC in mice and humans. Here, we show that mitochondrial oxidative stress and progression from cirrhosis to HCC and acetaminophen-induced liver necrosis are critically dependent on NADPH depletion and polyol buildup by aldose reductase (AR), while this enzyme protects from carbon trapping in the PPP and growth restriction in TAL deficiency. Both TAL and AR are confined to the cytosol; however, their inactivation distorts mitochondrial redox homeostasis in opposite directions. The results suggest that AR acts as a rheostat of carbon recycling and NADPH output of the PPP with broad implications for disease progression from cirrhosis to HCC. In this study, Oaks and Patel et al. characterize the crosstalk between the pentose phosphate pathway and mitochondrial redox homeostasis in the context of aldose reductase and transaldolase deficiency and the contribution of pentose phosphate pathway mitochondria deregulation to the progression from cirrhosis to hepatocellular carcinoma.</description><identifier>ISSN: 2522-5812</identifier><identifier>EISSN: 2522-5812</identifier><identifier>DOI: 10.1038/s42255-022-00711-9</identifier><identifier>PMID: 36658399</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/109 ; 13/31 ; 13/89 ; 14/63 ; 38/91 ; 45/90 ; 631/443/319 ; 631/45/320 ; 631/67/2327 ; 64/110 ; 64/60 ; 692/420/755 ; Animals ; Biomedical and Life Sciences ; Carcinogenesis - pathology ; Carcinoma, Hepatocellular - pathology ; Cytosol - pathology ; Humans ; Life Sciences ; Liver Cirrhosis - pathology ; Liver Neoplasms - pathology ; Mice ; NADP</subject><ispartof>Nature metabolism, 2023-01, Vol.5 (1), p.41-60</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-d8a1cf7e824fb007e579be89f1d89aedda933944044d3e842478338fa812cf4d3</citedby><cites>FETCH-LOGICAL-c446t-d8a1cf7e824fb007e579be89f1d89aedda933944044d3e842478338fa812cf4d3</cites><orcidid>0000-0002-8147-0498 ; 0000-0003-1552-7377 ; 0000-0002-5017-1348 ; 0000-0002-9009-4180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42255-022-00711-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s42255-022-00711-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36658399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oaks, Z.</creatorcontrib><creatorcontrib>Patel, A.</creatorcontrib><creatorcontrib>Huang, N.</creatorcontrib><creatorcontrib>Choudhary, G.</creatorcontrib><creatorcontrib>Winans, T.</creatorcontrib><creatorcontrib>Faludi, T.</creatorcontrib><creatorcontrib>Krakko, D.</creatorcontrib><creatorcontrib>Duarte, M.</creatorcontrib><creatorcontrib>Lewis, J.</creatorcontrib><creatorcontrib>Beckford, M.</creatorcontrib><creatorcontrib>Blair, S.</creatorcontrib><creatorcontrib>Kelly, R.</creatorcontrib><creatorcontrib>Landas, S. K.</creatorcontrib><creatorcontrib>Middleton, F. A.</creatorcontrib><creatorcontrib>Asara, J. M.</creatorcontrib><creatorcontrib>Chung, S. K.</creatorcontrib><creatorcontrib>Fernandez, D. R.</creatorcontrib><creatorcontrib>Banki, K.</creatorcontrib><creatorcontrib>Perl, A.</creatorcontrib><title>Cytosolic aldose metabolism contributes to progression from cirrhosis to hepatocarcinogenesis</title><title>Nature metabolism</title><addtitle>Nat Metab</addtitle><addtitle>Nat Metab</addtitle><description>Oxidative stress modulates carcinogenesis in the liver; however, direct evidence for metabolic control of oxidative stress during pathogenesis, particularly, of progression from cirrhosis to hepatocellular carcinoma (HCC), has been lacking. Deficiency of transaldolase (TAL), a rate-limiting enzyme of the non-oxidative branch of the pentose phosphate pathway (PPP), restricts growth and predisposes to cirrhosis and HCC in mice and humans. Here, we show that mitochondrial oxidative stress and progression from cirrhosis to HCC and acetaminophen-induced liver necrosis are critically dependent on NADPH depletion and polyol buildup by aldose reductase (AR), while this enzyme protects from carbon trapping in the PPP and growth restriction in TAL deficiency. Both TAL and AR are confined to the cytosol; however, their inactivation distorts mitochondrial redox homeostasis in opposite directions. The results suggest that AR acts as a rheostat of carbon recycling and NADPH output of the PPP with broad implications for disease progression from cirrhosis to HCC. In this study, Oaks and Patel et al. characterize the crosstalk between the pentose phosphate pathway and mitochondrial redox homeostasis in the context of aldose reductase and transaldolase deficiency and the contribution of pentose phosphate pathway mitochondria deregulation to the progression from cirrhosis to hepatocellular carcinoma.</description><subject>13/106</subject><subject>13/109</subject><subject>13/31</subject><subject>13/89</subject><subject>14/63</subject><subject>38/91</subject><subject>45/90</subject><subject>631/443/319</subject><subject>631/45/320</subject><subject>631/67/2327</subject><subject>64/110</subject><subject>64/60</subject><subject>692/420/755</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Carcinogenesis - pathology</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Cytosol - pathology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Liver Cirrhosis - pathology</subject><subject>Liver Neoplasms - pathology</subject><subject>Mice</subject><subject>NADP</subject><issn>2522-5812</issn><issn>2522-5812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EohX0B1ig_EDArzT2BglVvKRKbGCJLMcZp66SuLJTpP49poGqbFjZvnfmjucgdEXwDcFM3EZOaVHkmNIc45KQXJ6gKS3SsxCEnh7dJ2gW4xpjTAnhhMpzNGHzeSGYlFP0sdgNPvrWmUy3tY-QdTDoKgmxy4zvh-Cq7QAxG3y2Cb4JEKPzfWaDT74LYeWj27sr2OjBGx2M630DPST9Ep1Z3UaY_ZwX6P3x4W3xnC9fn14W98vccD4f8lpoYmwJgnJbpW2gKGUFQlpSC6mhrrVkTHKOOa8ZCE55KRgTVqftjE3aBbobczfbqoPaQPq3btUmuE6HnfLaqb9O71aq8Z9KCkkZJimAjgEm-BgD2EMvweqbtxp5q8Rb7XkrmZquj6ceWn7ppgI2FsRk9Q0Etfbb0CcS_8V-ASZ7j28</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Oaks, Z.</creator><creator>Patel, A.</creator><creator>Huang, N.</creator><creator>Choudhary, G.</creator><creator>Winans, T.</creator><creator>Faludi, T.</creator><creator>Krakko, D.</creator><creator>Duarte, M.</creator><creator>Lewis, J.</creator><creator>Beckford, M.</creator><creator>Blair, S.</creator><creator>Kelly, R.</creator><creator>Landas, S. K.</creator><creator>Middleton, F. A.</creator><creator>Asara, J. M.</creator><creator>Chung, S. K.</creator><creator>Fernandez, D. R.</creator><creator>Banki, K.</creator><creator>Perl, A.</creator><general>Nature Publishing Group UK</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8147-0498</orcidid><orcidid>https://orcid.org/0000-0003-1552-7377</orcidid><orcidid>https://orcid.org/0000-0002-5017-1348</orcidid><orcidid>https://orcid.org/0000-0002-9009-4180</orcidid></search><sort><creationdate>20230101</creationdate><title>Cytosolic aldose metabolism contributes to progression from cirrhosis to hepatocarcinogenesis</title><author>Oaks, Z. ; Patel, A. ; Huang, N. ; Choudhary, G. ; Winans, T. ; Faludi, T. ; Krakko, D. ; Duarte, M. ; Lewis, J. ; Beckford, M. ; Blair, S. ; Kelly, R. ; Landas, S. K. ; Middleton, F. A. ; Asara, J. M. ; Chung, S. K. ; Fernandez, D. R. ; Banki, K. ; Perl, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-d8a1cf7e824fb007e579be89f1d89aedda933944044d3e842478338fa812cf4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>13/106</topic><topic>13/109</topic><topic>13/31</topic><topic>13/89</topic><topic>14/63</topic><topic>38/91</topic><topic>45/90</topic><topic>631/443/319</topic><topic>631/45/320</topic><topic>631/67/2327</topic><topic>64/110</topic><topic>64/60</topic><topic>692/420/755</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Carcinogenesis - pathology</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Cytosol - pathology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Liver Cirrhosis - pathology</topic><topic>Liver Neoplasms - pathology</topic><topic>Mice</topic><topic>NADP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oaks, Z.</creatorcontrib><creatorcontrib>Patel, A.</creatorcontrib><creatorcontrib>Huang, N.</creatorcontrib><creatorcontrib>Choudhary, G.</creatorcontrib><creatorcontrib>Winans, T.</creatorcontrib><creatorcontrib>Faludi, T.</creatorcontrib><creatorcontrib>Krakko, D.</creatorcontrib><creatorcontrib>Duarte, M.</creatorcontrib><creatorcontrib>Lewis, J.</creatorcontrib><creatorcontrib>Beckford, M.</creatorcontrib><creatorcontrib>Blair, S.</creatorcontrib><creatorcontrib>Kelly, R.</creatorcontrib><creatorcontrib>Landas, S. K.</creatorcontrib><creatorcontrib>Middleton, F. A.</creatorcontrib><creatorcontrib>Asara, J. M.</creatorcontrib><creatorcontrib>Chung, S. K.</creatorcontrib><creatorcontrib>Fernandez, D. R.</creatorcontrib><creatorcontrib>Banki, K.</creatorcontrib><creatorcontrib>Perl, A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oaks, Z.</au><au>Patel, A.</au><au>Huang, N.</au><au>Choudhary, G.</au><au>Winans, T.</au><au>Faludi, T.</au><au>Krakko, D.</au><au>Duarte, M.</au><au>Lewis, J.</au><au>Beckford, M.</au><au>Blair, S.</au><au>Kelly, R.</au><au>Landas, S. K.</au><au>Middleton, F. A.</au><au>Asara, J. M.</au><au>Chung, S. K.</au><au>Fernandez, D. R.</au><au>Banki, K.</au><au>Perl, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytosolic aldose metabolism contributes to progression from cirrhosis to hepatocarcinogenesis</atitle><jtitle>Nature metabolism</jtitle><stitle>Nat Metab</stitle><addtitle>Nat Metab</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>5</volume><issue>1</issue><spage>41</spage><epage>60</epage><pages>41-60</pages><issn>2522-5812</issn><eissn>2522-5812</eissn><abstract>Oxidative stress modulates carcinogenesis in the liver; however, direct evidence for metabolic control of oxidative stress during pathogenesis, particularly, of progression from cirrhosis to hepatocellular carcinoma (HCC), has been lacking. Deficiency of transaldolase (TAL), a rate-limiting enzyme of the non-oxidative branch of the pentose phosphate pathway (PPP), restricts growth and predisposes to cirrhosis and HCC in mice and humans. Here, we show that mitochondrial oxidative stress and progression from cirrhosis to HCC and acetaminophen-induced liver necrosis are critically dependent on NADPH depletion and polyol buildup by aldose reductase (AR), while this enzyme protects from carbon trapping in the PPP and growth restriction in TAL deficiency. Both TAL and AR are confined to the cytosol; however, their inactivation distorts mitochondrial redox homeostasis in opposite directions. The results suggest that AR acts as a rheostat of carbon recycling and NADPH output of the PPP with broad implications for disease progression from cirrhosis to HCC. In this study, Oaks and Patel et al. characterize the crosstalk between the pentose phosphate pathway and mitochondrial redox homeostasis in the context of aldose reductase and transaldolase deficiency and the contribution of pentose phosphate pathway mitochondria deregulation to the progression from cirrhosis to hepatocellular carcinoma.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36658399</pmid><doi>10.1038/s42255-022-00711-9</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-8147-0498</orcidid><orcidid>https://orcid.org/0000-0003-1552-7377</orcidid><orcidid>https://orcid.org/0000-0002-5017-1348</orcidid><orcidid>https://orcid.org/0000-0002-9009-4180</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2522-5812
ispartof Nature metabolism, 2023-01, Vol.5 (1), p.41-60
issn 2522-5812
2522-5812
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9892301
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects 13/106
13/109
13/31
13/89
14/63
38/91
45/90
631/443/319
631/45/320
631/67/2327
64/110
64/60
692/420/755
Animals
Biomedical and Life Sciences
Carcinogenesis - pathology
Carcinoma, Hepatocellular - pathology
Cytosol - pathology
Humans
Life Sciences
Liver Cirrhosis - pathology
Liver Neoplasms - pathology
Mice
NADP
title Cytosolic aldose metabolism contributes to progression from cirrhosis to hepatocarcinogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytosolic%20aldose%20metabolism%20contributes%20to%20progression%20from%20cirrhosis%20to%20hepatocarcinogenesis&rft.jtitle=Nature%20metabolism&rft.au=Oaks,%20Z.&rft.date=2023-01-01&rft.volume=5&rft.issue=1&rft.spage=41&rft.epage=60&rft.pages=41-60&rft.issn=2522-5812&rft.eissn=2522-5812&rft_id=info:doi/10.1038/s42255-022-00711-9&rft_dat=%3Cpubmed_cross%3E36658399%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36658399&rfr_iscdi=true