Efficient chip-based optical parametric oscillators from 590 nm to 1150 nm
Optical parametric oscillators are widely used to generate coherent light at frequencies not accessible by conventional laser gain. However, chip-based parametric oscillators operating in the visible spectrum have suffered from pump-to-signal conversion efficiencies typically less than 0.1 %. Here,...
Gespeichert in:
Veröffentlicht in: | Optica 2022, Vol.7 (12) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Optical parametric oscillators are widely used to generate coherent light at frequencies not accessible by conventional laser gain. However, chip-based parametric oscillators operating in the visible spectrum have suffered from pump-to-signal conversion efficiencies typically less than 0.1 %. Here, we demonstrate efficient optical parametric oscillators based on silicon nitride photonics that address frequencies between 260 THz (1150 nm) and 510 THz (590 nm). Pumping silicon nitride microrings near 385 THz (780 nm) yields monochromatic signal and idler waves with unprecedented output powers in this wavelength range. We estimate on-chip output powers (separately for the signal and idler) between 1 mW and 5 mW and conversion efficiencies reaching ≈15 %. Underlying this improved performance is our development of pulley waveguides for broadband near-critical coupling, which exploits a fundamental connection between the waveguide-resonator coupling rate and conversion efficiency. Finally, we find that mode competition reduces conversion efficiency at high pump powers, thereby constraining the maximum realizable output power. Our work proves that optical parametric oscillators built with integrated photonics can produce useful amounts of visible laser light with high efficiency. |
---|---|
ISSN: | 2334-2536 2334-2536 |
DOI: | 10.1063/5.0117691 |