Prospective and retrospective values integrated in frontal cortex drive predictive choice
To make a deliberate action in a volatile environment, the brain must frequently reassess the value of each action (action-value). Choice can be initially made from the experience of trial-and-errors, but once the dynamics of the environment is learned, the choice can be made from the knowledge of t...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-11, Vol.119 (48), p.e2206067119-e2206067119 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To make a deliberate action in a volatile environment, the brain must frequently reassess the value of each action (action-value). Choice can be initially made from the experience of trial-and-errors, but once the dynamics of the environment is learned, the choice can be made from the knowledge of the environment. The action-values constructed from the experience (retrospective value) and the ones from the knowledge (prospective value) were identified in various regions of the brain. However, how and which neural circuit integrates these values and executes the chosen action remains unknown. Combining reinforcement learning and two-photon calcium imaging, we found that the preparatory activity of neurons in a part of the frontal cortex, the anterior-lateral motor (ALM) area, initially encodes retrospective value, but after extensive training, they jointly encode the retrospective and prospective value. Optogenetic inhibition of ALM preparatory activity specifically abolished the expert mice's predictive choice behavior and returned them to the novice-like state. Thus, the integrated action-value encoded in the preparatory activity of ALM plays an important role to bias the action toward the knowledge-dependent, predictive choice behavior. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.2206067119 |