Identification of the Acid-Sensitive Site Critical for Chloral Hydrate (CH) Activation of the Proton-Activated Chloride Channel
The transmembrane protein TMEM206 was recently identified as the molecular basis of the extracellular proton-activated Cl channel (PAC), which plays an essential role in neuronal death in ischemia-reperfusion. The PAC channel is activated by extracellular acid, but the proton-sensitive mechanism rem...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2023-01, Vol.43 (4), p.526-539 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 539 |
---|---|
container_issue | 4 |
container_start_page | 526 |
container_title | The Journal of neuroscience |
container_volume | 43 |
creator | Xu, Xiang-Ying Zhang, Fei-Fei Gan, Jun Zhang, Mao-Yin Shen, Zhong-Shan Guo, Qing Teng, Yue Ji, Jun-Wei Cao, Jun-Li Tang, Qiong-Yao Zhang, Zhe |
description | The transmembrane protein TMEM206 was recently identified as the molecular basis of the extracellular proton-activated Cl
channel (PAC), which plays an essential role in neuronal death in ischemia-reperfusion. The PAC channel is activated by extracellular acid, but the proton-sensitive mechanism remains unclear, although different acid-sensitive pockets have been suggested based on the cryo-EM structure of the human PAC (hPAC) channel. In the present study, we firstly identified two acidic amino acid residues that removed the pH-dependent activation of the hPAC channel by neutralization all the conservative negative charged residues located in the extracellular domain of the hPAC channel and some positively charged residues at the hotspot combined with two-electrode voltage-clamp (TEVC) recording in the
oocytes system. Double-mutant cycle analysis and double cysteine mutant of these two residues proved that these two residues cooperatively form a proton-sensitive site. In addition, we found that chloral hydrate activates the hPAC channel depending on the normal pH sensitivity of the hPAC channel. Furthermore, the PAC channel knock-out (KO) male mice (C57BL/6J) resist chloral hydrate-induced sedation and hypnosis. Our study provides a molecular basis for understanding the proton-dependent activation mechanism of the hPAC channel and a novel drug target of chloral hydrate.
Proton-activated Cl
channel (PAC) channels are widely distributed in the nervous system and play a vital pathophysiological role in ischemia and endosomal acidification. The main discovery of this paper is that we identified the proton activation mechanism of the human proton-activated chloride channel (hPAC). Intriguingly, we also found that anesthetic chloral hydrate can activate the hPAC channel in a pH-dependent manner. We found that the chloral hydrate activates the hPAC channel and needs the integrity of the pH-sensitive site. In addition, the PAC channel knock-out (KO) mice are resistant to chloral hydrate-induced anesthesia. The study on PAC channels' pH activation mechanism enables us to better understand PAC's biophysical mechanism and provides a novel target of chloral hydrate. |
doi_str_mv | 10.1523/JNEUROSCI.0482-22.2022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9888509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770357514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-440e9f542748dd12dd60cb9f72bcd5ebc1c8d68aee1b80972f48378a10d6e6723</originalsourceid><addsrcrecordid>eNpdkVFr2zAUhcXYWLN2f6EY9tI-OLu6ki35ZVBMt2SUdTTts5AleVFxpE52Cn3aX59K0rAOBJI43zncyyHklMKcVsg-f_9xeXdzvWqXc-ASS8Q5AuIbMstqUyIH-pbMAAWUNRf8iHwYx3sAEEDFe3LEapRMMjojf5bWhcn33ujJx1DEvpjWrrgw3pYrF0Y_-UdXrPzkijblj9FD0cdUtOshpvxePNmks3jWLs6zK9Ovcn6mOMVQ7gVndz5vc9pah-CGE_Ku18PoPu7vY3L39fK2XZRX19-W7cVVaTjHqeQcXNNXHAWX1lK0tgbTNb3AztjKdYYaaWupnaOdhEZgzyUTUlOwtasFsmPyZZf7sO02zpq8dB5fPSS_0elJRe3VayX4tfoVH1UjpaygyQFn-4AUf2_dOKmNH40bBh1c3I4KBTbAQAiR0U__ofdxm0JeL1MCWCUqyjNV7yiT4jgm1x-GoaCeO1aHjtVzxwrzyR1n4-m_qxxsL6Wyv_zmpK8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770357514</pqid></control><display><type>article</type><title>Identification of the Acid-Sensitive Site Critical for Chloral Hydrate (CH) Activation of the Proton-Activated Chloride Channel</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Xu, Xiang-Ying ; Zhang, Fei-Fei ; Gan, Jun ; Zhang, Mao-Yin ; Shen, Zhong-Shan ; Guo, Qing ; Teng, Yue ; Ji, Jun-Wei ; Cao, Jun-Li ; Tang, Qiong-Yao ; Zhang, Zhe</creator><creatorcontrib>Xu, Xiang-Ying ; Zhang, Fei-Fei ; Gan, Jun ; Zhang, Mao-Yin ; Shen, Zhong-Shan ; Guo, Qing ; Teng, Yue ; Ji, Jun-Wei ; Cao, Jun-Li ; Tang, Qiong-Yao ; Zhang, Zhe</creatorcontrib><description>The transmembrane protein TMEM206 was recently identified as the molecular basis of the extracellular proton-activated Cl
channel (PAC), which plays an essential role in neuronal death in ischemia-reperfusion. The PAC channel is activated by extracellular acid, but the proton-sensitive mechanism remains unclear, although different acid-sensitive pockets have been suggested based on the cryo-EM structure of the human PAC (hPAC) channel. In the present study, we firstly identified two acidic amino acid residues that removed the pH-dependent activation of the hPAC channel by neutralization all the conservative negative charged residues located in the extracellular domain of the hPAC channel and some positively charged residues at the hotspot combined with two-electrode voltage-clamp (TEVC) recording in the
oocytes system. Double-mutant cycle analysis and double cysteine mutant of these two residues proved that these two residues cooperatively form a proton-sensitive site. In addition, we found that chloral hydrate activates the hPAC channel depending on the normal pH sensitivity of the hPAC channel. Furthermore, the PAC channel knock-out (KO) male mice (C57BL/6J) resist chloral hydrate-induced sedation and hypnosis. Our study provides a molecular basis for understanding the proton-dependent activation mechanism of the hPAC channel and a novel drug target of chloral hydrate.
Proton-activated Cl
channel (PAC) channels are widely distributed in the nervous system and play a vital pathophysiological role in ischemia and endosomal acidification. The main discovery of this paper is that we identified the proton activation mechanism of the human proton-activated chloride channel (hPAC). Intriguingly, we also found that anesthetic chloral hydrate can activate the hPAC channel in a pH-dependent manner. We found that the chloral hydrate activates the hPAC channel and needs the integrity of the pH-sensitive site. In addition, the PAC channel knock-out (KO) mice are resistant to chloral hydrate-induced anesthesia. The study on PAC channels' pH activation mechanism enables us to better understand PAC's biophysical mechanism and provides a novel target of chloral hydrate.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.0482-22.2022</identifier><identifier>PMID: 36283831</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Amino acids ; Animals ; Chloral ; Chloral hydrate ; Chloral Hydrate - pharmacology ; Chloride Channels - genetics ; Chloride Channels - metabolism ; Chloride ions ; Chlorides - metabolism ; Gametocytes ; Humans ; Hypnosis ; Ion channels ; Ischemia ; Male ; Mice ; Mice, Inbred C57BL ; Mutants ; Neutralization ; Oocytes ; pH effects ; Protons ; Reperfusion ; Residues ; Therapeutic targets</subject><ispartof>The Journal of neuroscience, 2023-01, Vol.43 (4), p.526-539</ispartof><rights>Copyright © 2023 the authors.</rights><rights>Copyright Society for Neuroscience Jan 25, 2023</rights><rights>Copyright © 2023 the authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-440e9f542748dd12dd60cb9f72bcd5ebc1c8d68aee1b80972f48378a10d6e6723</citedby><cites>FETCH-LOGICAL-c442t-440e9f542748dd12dd60cb9f72bcd5ebc1c8d68aee1b80972f48378a10d6e6723</cites><orcidid>0000-0002-1222-7371 ; 0000-0002-8036-698X ; 0000-0002-8932-4743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9888509/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9888509/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36283831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xiang-Ying</creatorcontrib><creatorcontrib>Zhang, Fei-Fei</creatorcontrib><creatorcontrib>Gan, Jun</creatorcontrib><creatorcontrib>Zhang, Mao-Yin</creatorcontrib><creatorcontrib>Shen, Zhong-Shan</creatorcontrib><creatorcontrib>Guo, Qing</creatorcontrib><creatorcontrib>Teng, Yue</creatorcontrib><creatorcontrib>Ji, Jun-Wei</creatorcontrib><creatorcontrib>Cao, Jun-Li</creatorcontrib><creatorcontrib>Tang, Qiong-Yao</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><title>Identification of the Acid-Sensitive Site Critical for Chloral Hydrate (CH) Activation of the Proton-Activated Chloride Channel</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The transmembrane protein TMEM206 was recently identified as the molecular basis of the extracellular proton-activated Cl
channel (PAC), which plays an essential role in neuronal death in ischemia-reperfusion. The PAC channel is activated by extracellular acid, but the proton-sensitive mechanism remains unclear, although different acid-sensitive pockets have been suggested based on the cryo-EM structure of the human PAC (hPAC) channel. In the present study, we firstly identified two acidic amino acid residues that removed the pH-dependent activation of the hPAC channel by neutralization all the conservative negative charged residues located in the extracellular domain of the hPAC channel and some positively charged residues at the hotspot combined with two-electrode voltage-clamp (TEVC) recording in the
oocytes system. Double-mutant cycle analysis and double cysteine mutant of these two residues proved that these two residues cooperatively form a proton-sensitive site. In addition, we found that chloral hydrate activates the hPAC channel depending on the normal pH sensitivity of the hPAC channel. Furthermore, the PAC channel knock-out (KO) male mice (C57BL/6J) resist chloral hydrate-induced sedation and hypnosis. Our study provides a molecular basis for understanding the proton-dependent activation mechanism of the hPAC channel and a novel drug target of chloral hydrate.
Proton-activated Cl
channel (PAC) channels are widely distributed in the nervous system and play a vital pathophysiological role in ischemia and endosomal acidification. The main discovery of this paper is that we identified the proton activation mechanism of the human proton-activated chloride channel (hPAC). Intriguingly, we also found that anesthetic chloral hydrate can activate the hPAC channel in a pH-dependent manner. We found that the chloral hydrate activates the hPAC channel and needs the integrity of the pH-sensitive site. In addition, the PAC channel knock-out (KO) mice are resistant to chloral hydrate-induced anesthesia. The study on PAC channels' pH activation mechanism enables us to better understand PAC's biophysical mechanism and provides a novel target of chloral hydrate.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Chloral</subject><subject>Chloral hydrate</subject><subject>Chloral Hydrate - pharmacology</subject><subject>Chloride Channels - genetics</subject><subject>Chloride Channels - metabolism</subject><subject>Chloride ions</subject><subject>Chlorides - metabolism</subject><subject>Gametocytes</subject><subject>Humans</subject><subject>Hypnosis</subject><subject>Ion channels</subject><subject>Ischemia</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mutants</subject><subject>Neutralization</subject><subject>Oocytes</subject><subject>pH effects</subject><subject>Protons</subject><subject>Reperfusion</subject><subject>Residues</subject><subject>Therapeutic targets</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkVFr2zAUhcXYWLN2f6EY9tI-OLu6ki35ZVBMt2SUdTTts5AleVFxpE52Cn3aX59K0rAOBJI43zncyyHklMKcVsg-f_9xeXdzvWqXc-ASS8Q5AuIbMstqUyIH-pbMAAWUNRf8iHwYx3sAEEDFe3LEapRMMjojf5bWhcn33ujJx1DEvpjWrrgw3pYrF0Y_-UdXrPzkijblj9FD0cdUtOshpvxePNmks3jWLs6zK9Ovcn6mOMVQ7gVndz5vc9pah-CGE_Ku18PoPu7vY3L39fK2XZRX19-W7cVVaTjHqeQcXNNXHAWX1lK0tgbTNb3AztjKdYYaaWupnaOdhEZgzyUTUlOwtasFsmPyZZf7sO02zpq8dB5fPSS_0elJRe3VayX4tfoVH1UjpaygyQFn-4AUf2_dOKmNH40bBh1c3I4KBTbAQAiR0U__ofdxm0JeL1MCWCUqyjNV7yiT4jgm1x-GoaCeO1aHjtVzxwrzyR1n4-m_qxxsL6Wyv_zmpK8</recordid><startdate>20230125</startdate><enddate>20230125</enddate><creator>Xu, Xiang-Ying</creator><creator>Zhang, Fei-Fei</creator><creator>Gan, Jun</creator><creator>Zhang, Mao-Yin</creator><creator>Shen, Zhong-Shan</creator><creator>Guo, Qing</creator><creator>Teng, Yue</creator><creator>Ji, Jun-Wei</creator><creator>Cao, Jun-Li</creator><creator>Tang, Qiong-Yao</creator><creator>Zhang, Zhe</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1222-7371</orcidid><orcidid>https://orcid.org/0000-0002-8036-698X</orcidid><orcidid>https://orcid.org/0000-0002-8932-4743</orcidid></search><sort><creationdate>20230125</creationdate><title>Identification of the Acid-Sensitive Site Critical for Chloral Hydrate (CH) Activation of the Proton-Activated Chloride Channel</title><author>Xu, Xiang-Ying ; Zhang, Fei-Fei ; Gan, Jun ; Zhang, Mao-Yin ; Shen, Zhong-Shan ; Guo, Qing ; Teng, Yue ; Ji, Jun-Wei ; Cao, Jun-Li ; Tang, Qiong-Yao ; Zhang, Zhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-440e9f542748dd12dd60cb9f72bcd5ebc1c8d68aee1b80972f48378a10d6e6723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Chloral</topic><topic>Chloral hydrate</topic><topic>Chloral Hydrate - pharmacology</topic><topic>Chloride Channels - genetics</topic><topic>Chloride Channels - metabolism</topic><topic>Chloride ions</topic><topic>Chlorides - metabolism</topic><topic>Gametocytes</topic><topic>Humans</topic><topic>Hypnosis</topic><topic>Ion channels</topic><topic>Ischemia</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mutants</topic><topic>Neutralization</topic><topic>Oocytes</topic><topic>pH effects</topic><topic>Protons</topic><topic>Reperfusion</topic><topic>Residues</topic><topic>Therapeutic targets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiang-Ying</creatorcontrib><creatorcontrib>Zhang, Fei-Fei</creatorcontrib><creatorcontrib>Gan, Jun</creatorcontrib><creatorcontrib>Zhang, Mao-Yin</creatorcontrib><creatorcontrib>Shen, Zhong-Shan</creatorcontrib><creatorcontrib>Guo, Qing</creatorcontrib><creatorcontrib>Teng, Yue</creatorcontrib><creatorcontrib>Ji, Jun-Wei</creatorcontrib><creatorcontrib>Cao, Jun-Li</creatorcontrib><creatorcontrib>Tang, Qiong-Yao</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiang-Ying</au><au>Zhang, Fei-Fei</au><au>Gan, Jun</au><au>Zhang, Mao-Yin</au><au>Shen, Zhong-Shan</au><au>Guo, Qing</au><au>Teng, Yue</au><au>Ji, Jun-Wei</au><au>Cao, Jun-Li</au><au>Tang, Qiong-Yao</au><au>Zhang, Zhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of the Acid-Sensitive Site Critical for Chloral Hydrate (CH) Activation of the Proton-Activated Chloride Channel</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2023-01-25</date><risdate>2023</risdate><volume>43</volume><issue>4</issue><spage>526</spage><epage>539</epage><pages>526-539</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>The transmembrane protein TMEM206 was recently identified as the molecular basis of the extracellular proton-activated Cl
channel (PAC), which plays an essential role in neuronal death in ischemia-reperfusion. The PAC channel is activated by extracellular acid, but the proton-sensitive mechanism remains unclear, although different acid-sensitive pockets have been suggested based on the cryo-EM structure of the human PAC (hPAC) channel. In the present study, we firstly identified two acidic amino acid residues that removed the pH-dependent activation of the hPAC channel by neutralization all the conservative negative charged residues located in the extracellular domain of the hPAC channel and some positively charged residues at the hotspot combined with two-electrode voltage-clamp (TEVC) recording in the
oocytes system. Double-mutant cycle analysis and double cysteine mutant of these two residues proved that these two residues cooperatively form a proton-sensitive site. In addition, we found that chloral hydrate activates the hPAC channel depending on the normal pH sensitivity of the hPAC channel. Furthermore, the PAC channel knock-out (KO) male mice (C57BL/6J) resist chloral hydrate-induced sedation and hypnosis. Our study provides a molecular basis for understanding the proton-dependent activation mechanism of the hPAC channel and a novel drug target of chloral hydrate.
Proton-activated Cl
channel (PAC) channels are widely distributed in the nervous system and play a vital pathophysiological role in ischemia and endosomal acidification. The main discovery of this paper is that we identified the proton activation mechanism of the human proton-activated chloride channel (hPAC). Intriguingly, we also found that anesthetic chloral hydrate can activate the hPAC channel in a pH-dependent manner. We found that the chloral hydrate activates the hPAC channel and needs the integrity of the pH-sensitive site. In addition, the PAC channel knock-out (KO) mice are resistant to chloral hydrate-induced anesthesia. The study on PAC channels' pH activation mechanism enables us to better understand PAC's biophysical mechanism and provides a novel target of chloral hydrate.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>36283831</pmid><doi>10.1523/JNEUROSCI.0482-22.2022</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1222-7371</orcidid><orcidid>https://orcid.org/0000-0002-8036-698X</orcidid><orcidid>https://orcid.org/0000-0002-8932-4743</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2023-01, Vol.43 (4), p.526-539 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9888509 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Amino acids Animals Chloral Chloral hydrate Chloral Hydrate - pharmacology Chloride Channels - genetics Chloride Channels - metabolism Chloride ions Chlorides - metabolism Gametocytes Humans Hypnosis Ion channels Ischemia Male Mice Mice, Inbred C57BL Mutants Neutralization Oocytes pH effects Protons Reperfusion Residues Therapeutic targets |
title | Identification of the Acid-Sensitive Site Critical for Chloral Hydrate (CH) Activation of the Proton-Activated Chloride Channel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A33%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20the%20Acid-Sensitive%20Site%20Critical%20for%20Chloral%20Hydrate%20(CH)%20Activation%20of%20the%20Proton-Activated%20Chloride%20Channel&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Xu,%20Xiang-Ying&rft.date=2023-01-25&rft.volume=43&rft.issue=4&rft.spage=526&rft.epage=539&rft.pages=526-539&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.0482-22.2022&rft_dat=%3Cproquest_pubme%3E2770357514%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770357514&rft_id=info:pmid/36283831&rfr_iscdi=true |