Nab3 nuclear granule accumulation is driven by respiratory capacity

Numerous biological processes involve proteins capable of transiently assembling into subcellular compartments necessary for cellular functions. One process is the RNA polymerase II transcription cycle which involves initiation, elongation, co-transcriptional modification of nascent RNA, and termina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current genetics 2022-12, Vol.68 (5-6), p.581-591
Hauptverfasser: Hutchinson, Katherine M., Hunn, Jeremy C., Reines, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 591
container_issue 5-6
container_start_page 581
container_title Current genetics
container_volume 68
creator Hutchinson, Katherine M.
Hunn, Jeremy C.
Reines, Daniel
description Numerous biological processes involve proteins capable of transiently assembling into subcellular compartments necessary for cellular functions. One process is the RNA polymerase II transcription cycle which involves initiation, elongation, co-transcriptional modification of nascent RNA, and termination. The essential yeast transcription termination factor Nab3 is required for termination of small non-coding RNAs and accumulates into a compact nuclear granule upon glucose removal. Nab3 nuclear granule accumulation varies in penetrance across yeast strains and a higher Nab3 granule accumulation phenotype is associated with petite strains, suggesting a possible ATP-dependent mechanism for granule disassembly. Here, we demonstrate the uncoupling of mitochondrial oxidative phosphorylation by drug treatment or deletions of nuclear-encoded ATP synthase subunit genes were sufficient to increase Nab3 granule accumulation and led to an inability to proliferate during prolonged glucose deprivation, which requires respiration. Additionally, by enriching for respiration competent cells from a petite-prone strain, we generated a low granule-accumulating strain from a relatively high one, providing another link between respiratory competency and Nab3 granules. Consistent with the resulting idea that ATP is involved in granule accumulation, the addition of extracellular ATP to semi-permeabilized cells was sufficient to reduce Nab3 granule accumulation. Deleting the SKY1 gene, which encodes a kinase that phosphorylates nuclear SR repeat-containing proteins and is involved in efficient stress granule disassembly, also resulted in increased granule accumulation. This observation implicates Sky1 in Nab3 granule biogenesis. Taken together, these findings suggest there is normally an equilibrium between termination factor granule assembly and disassembly mediated by ATP-requiring nuclear machinery.
doi_str_mv 10.1007/s00294-022-01248-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9887517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2698631975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-a6ce96019b8a6b58e8dd4ded7dd44fab04c9ad435419fc532613c4977c3e245c3</originalsourceid><addsrcrecordid>eNp9kclOwzAQhi0EgrK8AAcUiQuXgNfYviChik1CcIGzNXHcYpQ6xU6K-vYYyn7gNLLmm88e_wjtE3xMMJYnCWOqeYkpLTGhXJUva2hEOMtHrdg6GmEiaamwYltoO6UnnCml5SbaYkJTKqgYofEt1KwIg20dxGIaIQytK8DaYTa00PsuFD4VTfQLF4p6WUSX5j5C38VlYWEO1vfLXbQxgTa5vY-6gx4uzu_HV-XN3eX1-OymtFzyvoTKOl1homsFVS2UU03DG9fIXPgEasythoYzwYmeWMFoRZjlWkrLHOXCsh10uvLOh3rmGutCH6E18-hnEJemA29-d4J_NNNuYbRSUhCZBUcfgtg9Dy71ZuaTdW0LwXVDMrTSqmJES5HRwz_oUzfEkNczVPL8sVjxNyFdUTZ2KUU3-XoMweYtI7PKyOSMzHtG5iUPHfxc42vkM5QMsBWQcitMXfy--x_tK2vkniM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2740170847</pqid></control><display><type>article</type><title>Nab3 nuclear granule accumulation is driven by respiratory capacity</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hutchinson, Katherine M. ; Hunn, Jeremy C. ; Reines, Daniel</creator><creatorcontrib>Hutchinson, Katherine M. ; Hunn, Jeremy C. ; Reines, Daniel</creatorcontrib><description>Numerous biological processes involve proteins capable of transiently assembling into subcellular compartments necessary for cellular functions. One process is the RNA polymerase II transcription cycle which involves initiation, elongation, co-transcriptional modification of nascent RNA, and termination. The essential yeast transcription termination factor Nab3 is required for termination of small non-coding RNAs and accumulates into a compact nuclear granule upon glucose removal. Nab3 nuclear granule accumulation varies in penetrance across yeast strains and a higher Nab3 granule accumulation phenotype is associated with petite strains, suggesting a possible ATP-dependent mechanism for granule disassembly. Here, we demonstrate the uncoupling of mitochondrial oxidative phosphorylation by drug treatment or deletions of nuclear-encoded ATP synthase subunit genes were sufficient to increase Nab3 granule accumulation and led to an inability to proliferate during prolonged glucose deprivation, which requires respiration. Additionally, by enriching for respiration competent cells from a petite-prone strain, we generated a low granule-accumulating strain from a relatively high one, providing another link between respiratory competency and Nab3 granules. Consistent with the resulting idea that ATP is involved in granule accumulation, the addition of extracellular ATP to semi-permeabilized cells was sufficient to reduce Nab3 granule accumulation. Deleting the SKY1 gene, which encodes a kinase that phosphorylates nuclear SR repeat-containing proteins and is involved in efficient stress granule disassembly, also resulted in increased granule accumulation. This observation implicates Sky1 in Nab3 granule biogenesis. Taken together, these findings suggest there is normally an equilibrium between termination factor granule assembly and disassembly mediated by ATP-requiring nuclear machinery.</description><identifier>ISSN: 0172-8083</identifier><identifier>EISSN: 1432-0983</identifier><identifier>DOI: 10.1007/s00294-022-01248-w</identifier><identifier>PMID: 35922525</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accumulation ; Adenosine Triphosphate - genetics ; Adenosine Triphosphate - metabolism ; ATP ; ATP synthase ; Biochemistry ; Biological activity ; Biomedical and Life Sciences ; Cell Biology ; Deprivation ; Dismantling ; DNA-directed RNA polymerase ; Elongation ; Glucose ; Glucose - genetics ; Glucose - metabolism ; Granular materials ; Kinases ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Mitochondria ; Nuclear Proteins - genetics ; Original Article ; Oxidative phosphorylation ; Phenotypes ; Phosphorylation ; Plant Sciences ; Protein Serine-Threonine Kinases ; Proteins ; Proteomics ; Respiration ; Ribonucleic acid ; RNA ; RNA modification ; RNA polymerase ; RNA polymerase II ; RNA-Binding Proteins - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Transcription termination ; Yeast ; Yeasts</subject><ispartof>Current genetics, 2022-12, Vol.68 (5-6), p.581-591</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-a6ce96019b8a6b58e8dd4ded7dd44fab04c9ad435419fc532613c4977c3e245c3</citedby><cites>FETCH-LOGICAL-c474t-a6ce96019b8a6b58e8dd4ded7dd44fab04c9ad435419fc532613c4977c3e245c3</cites><orcidid>0000-0003-0832-6243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00294-022-01248-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00294-022-01248-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35922525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hutchinson, Katherine M.</creatorcontrib><creatorcontrib>Hunn, Jeremy C.</creatorcontrib><creatorcontrib>Reines, Daniel</creatorcontrib><title>Nab3 nuclear granule accumulation is driven by respiratory capacity</title><title>Current genetics</title><addtitle>Curr Genet</addtitle><addtitle>Curr Genet</addtitle><description>Numerous biological processes involve proteins capable of transiently assembling into subcellular compartments necessary for cellular functions. One process is the RNA polymerase II transcription cycle which involves initiation, elongation, co-transcriptional modification of nascent RNA, and termination. The essential yeast transcription termination factor Nab3 is required for termination of small non-coding RNAs and accumulates into a compact nuclear granule upon glucose removal. Nab3 nuclear granule accumulation varies in penetrance across yeast strains and a higher Nab3 granule accumulation phenotype is associated with petite strains, suggesting a possible ATP-dependent mechanism for granule disassembly. Here, we demonstrate the uncoupling of mitochondrial oxidative phosphorylation by drug treatment or deletions of nuclear-encoded ATP synthase subunit genes were sufficient to increase Nab3 granule accumulation and led to an inability to proliferate during prolonged glucose deprivation, which requires respiration. Additionally, by enriching for respiration competent cells from a petite-prone strain, we generated a low granule-accumulating strain from a relatively high one, providing another link between respiratory competency and Nab3 granules. Consistent with the resulting idea that ATP is involved in granule accumulation, the addition of extracellular ATP to semi-permeabilized cells was sufficient to reduce Nab3 granule accumulation. Deleting the SKY1 gene, which encodes a kinase that phosphorylates nuclear SR repeat-containing proteins and is involved in efficient stress granule disassembly, also resulted in increased granule accumulation. This observation implicates Sky1 in Nab3 granule biogenesis. Taken together, these findings suggest there is normally an equilibrium between termination factor granule assembly and disassembly mediated by ATP-requiring nuclear machinery.</description><subject>Accumulation</subject><subject>Adenosine Triphosphate - genetics</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>ATP</subject><subject>ATP synthase</subject><subject>Biochemistry</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Deprivation</subject><subject>Dismantling</subject><subject>DNA-directed RNA polymerase</subject><subject>Elongation</subject><subject>Glucose</subject><subject>Glucose - genetics</subject><subject>Glucose - metabolism</subject><subject>Granular materials</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mitochondria</subject><subject>Nuclear Proteins - genetics</subject><subject>Original Article</subject><subject>Oxidative phosphorylation</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Plant Sciences</subject><subject>Protein Serine-Threonine Kinases</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Respiration</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA modification</subject><subject>RNA polymerase</subject><subject>RNA polymerase II</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Transcription termination</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0172-8083</issn><issn>1432-0983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kclOwzAQhi0EgrK8AAcUiQuXgNfYviChik1CcIGzNXHcYpQ6xU6K-vYYyn7gNLLmm88e_wjtE3xMMJYnCWOqeYkpLTGhXJUva2hEOMtHrdg6GmEiaamwYltoO6UnnCml5SbaYkJTKqgYofEt1KwIg20dxGIaIQytK8DaYTa00PsuFD4VTfQLF4p6WUSX5j5C38VlYWEO1vfLXbQxgTa5vY-6gx4uzu_HV-XN3eX1-OymtFzyvoTKOl1homsFVS2UU03DG9fIXPgEasythoYzwYmeWMFoRZjlWkrLHOXCsh10uvLOh3rmGutCH6E18-hnEJemA29-d4J_NNNuYbRSUhCZBUcfgtg9Dy71ZuaTdW0LwXVDMrTSqmJES5HRwz_oUzfEkNczVPL8sVjxNyFdUTZ2KUU3-XoMweYtI7PKyOSMzHtG5iUPHfxc42vkM5QMsBWQcitMXfy--x_tK2vkniM</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Hutchinson, Katherine M.</creator><creator>Hunn, Jeremy C.</creator><creator>Reines, Daniel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0832-6243</orcidid></search><sort><creationdate>20221201</creationdate><title>Nab3 nuclear granule accumulation is driven by respiratory capacity</title><author>Hutchinson, Katherine M. ; Hunn, Jeremy C. ; Reines, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-a6ce96019b8a6b58e8dd4ded7dd44fab04c9ad435419fc532613c4977c3e245c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accumulation</topic><topic>Adenosine Triphosphate - genetics</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>ATP</topic><topic>ATP synthase</topic><topic>Biochemistry</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Deprivation</topic><topic>Dismantling</topic><topic>DNA-directed RNA polymerase</topic><topic>Elongation</topic><topic>Glucose</topic><topic>Glucose - genetics</topic><topic>Glucose - metabolism</topic><topic>Granular materials</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mitochondria</topic><topic>Nuclear Proteins - genetics</topic><topic>Original Article</topic><topic>Oxidative phosphorylation</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Plant Sciences</topic><topic>Protein Serine-Threonine Kinases</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Respiration</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA modification</topic><topic>RNA polymerase</topic><topic>RNA polymerase II</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Transcription termination</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hutchinson, Katherine M.</creatorcontrib><creatorcontrib>Hunn, Jeremy C.</creatorcontrib><creatorcontrib>Reines, Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hutchinson, Katherine M.</au><au>Hunn, Jeremy C.</au><au>Reines, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nab3 nuclear granule accumulation is driven by respiratory capacity</atitle><jtitle>Current genetics</jtitle><stitle>Curr Genet</stitle><addtitle>Curr Genet</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>68</volume><issue>5-6</issue><spage>581</spage><epage>591</epage><pages>581-591</pages><issn>0172-8083</issn><eissn>1432-0983</eissn><abstract>Numerous biological processes involve proteins capable of transiently assembling into subcellular compartments necessary for cellular functions. One process is the RNA polymerase II transcription cycle which involves initiation, elongation, co-transcriptional modification of nascent RNA, and termination. The essential yeast transcription termination factor Nab3 is required for termination of small non-coding RNAs and accumulates into a compact nuclear granule upon glucose removal. Nab3 nuclear granule accumulation varies in penetrance across yeast strains and a higher Nab3 granule accumulation phenotype is associated with petite strains, suggesting a possible ATP-dependent mechanism for granule disassembly. Here, we demonstrate the uncoupling of mitochondrial oxidative phosphorylation by drug treatment or deletions of nuclear-encoded ATP synthase subunit genes were sufficient to increase Nab3 granule accumulation and led to an inability to proliferate during prolonged glucose deprivation, which requires respiration. Additionally, by enriching for respiration competent cells from a petite-prone strain, we generated a low granule-accumulating strain from a relatively high one, providing another link between respiratory competency and Nab3 granules. Consistent with the resulting idea that ATP is involved in granule accumulation, the addition of extracellular ATP to semi-permeabilized cells was sufficient to reduce Nab3 granule accumulation. Deleting the SKY1 gene, which encodes a kinase that phosphorylates nuclear SR repeat-containing proteins and is involved in efficient stress granule disassembly, also resulted in increased granule accumulation. This observation implicates Sky1 in Nab3 granule biogenesis. Taken together, these findings suggest there is normally an equilibrium between termination factor granule assembly and disassembly mediated by ATP-requiring nuclear machinery.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35922525</pmid><doi>10.1007/s00294-022-01248-w</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0832-6243</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0172-8083
ispartof Current genetics, 2022-12, Vol.68 (5-6), p.581-591
issn 0172-8083
1432-0983
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9887517
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Accumulation
Adenosine Triphosphate - genetics
Adenosine Triphosphate - metabolism
ATP
ATP synthase
Biochemistry
Biological activity
Biomedical and Life Sciences
Cell Biology
Deprivation
Dismantling
DNA-directed RNA polymerase
Elongation
Glucose
Glucose - genetics
Glucose - metabolism
Granular materials
Kinases
Life Sciences
Microbial Genetics and Genomics
Microbiology
Mitochondria
Nuclear Proteins - genetics
Original Article
Oxidative phosphorylation
Phenotypes
Phosphorylation
Plant Sciences
Protein Serine-Threonine Kinases
Proteins
Proteomics
Respiration
Ribonucleic acid
RNA
RNA modification
RNA polymerase
RNA polymerase II
RNA-Binding Proteins - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Transcription termination
Yeast
Yeasts
title Nab3 nuclear granule accumulation is driven by respiratory capacity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nab3%20nuclear%20granule%20accumulation%20is%20driven%20by%20respiratory%20capacity&rft.jtitle=Current%20genetics&rft.au=Hutchinson,%20Katherine%20M.&rft.date=2022-12-01&rft.volume=68&rft.issue=5-6&rft.spage=581&rft.epage=591&rft.pages=581-591&rft.issn=0172-8083&rft.eissn=1432-0983&rft_id=info:doi/10.1007/s00294-022-01248-w&rft_dat=%3Cproquest_pubme%3E2698631975%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2740170847&rft_id=info:pmid/35922525&rfr_iscdi=true