Nab3 nuclear granule accumulation is driven by respiratory capacity
Numerous biological processes involve proteins capable of transiently assembling into subcellular compartments necessary for cellular functions. One process is the RNA polymerase II transcription cycle which involves initiation, elongation, co-transcriptional modification of nascent RNA, and termina...
Gespeichert in:
Veröffentlicht in: | Current genetics 2022-12, Vol.68 (5-6), p.581-591 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 591 |
---|---|
container_issue | 5-6 |
container_start_page | 581 |
container_title | Current genetics |
container_volume | 68 |
creator | Hutchinson, Katherine M. Hunn, Jeremy C. Reines, Daniel |
description | Numerous biological processes involve proteins capable of transiently assembling into subcellular compartments necessary for cellular functions. One process is the RNA polymerase II transcription cycle which involves initiation, elongation, co-transcriptional modification of nascent RNA, and termination. The essential yeast transcription termination factor Nab3 is required for termination of small non-coding RNAs and accumulates into a compact nuclear granule upon glucose removal. Nab3 nuclear granule accumulation varies in penetrance across yeast strains and a higher Nab3 granule accumulation phenotype is associated with petite strains, suggesting a possible ATP-dependent mechanism for granule disassembly. Here, we demonstrate the uncoupling of mitochondrial oxidative phosphorylation by drug treatment or deletions of nuclear-encoded ATP synthase subunit genes were sufficient to increase Nab3 granule accumulation and led to an inability to proliferate during prolonged glucose deprivation, which requires respiration. Additionally, by enriching for respiration competent cells from a petite-prone strain, we generated a low granule-accumulating strain from a relatively high one, providing another link between respiratory competency and Nab3 granules. Consistent with the resulting idea that ATP is involved in granule accumulation, the addition of extracellular ATP to semi-permeabilized cells was sufficient to reduce Nab3 granule accumulation. Deleting the
SKY1
gene, which encodes a kinase that phosphorylates nuclear SR repeat-containing proteins and is involved in efficient stress granule disassembly, also resulted in increased granule accumulation. This observation implicates Sky1 in Nab3 granule biogenesis. Taken together, these findings suggest there is normally an equilibrium between termination factor granule assembly and disassembly mediated by ATP-requiring nuclear machinery. |
doi_str_mv | 10.1007/s00294-022-01248-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9887517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2698631975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-a6ce96019b8a6b58e8dd4ded7dd44fab04c9ad435419fc532613c4977c3e245c3</originalsourceid><addsrcrecordid>eNp9kclOwzAQhi0EgrK8AAcUiQuXgNfYviChik1CcIGzNXHcYpQ6xU6K-vYYyn7gNLLmm88e_wjtE3xMMJYnCWOqeYkpLTGhXJUva2hEOMtHrdg6GmEiaamwYltoO6UnnCml5SbaYkJTKqgYofEt1KwIg20dxGIaIQytK8DaYTa00PsuFD4VTfQLF4p6WUSX5j5C38VlYWEO1vfLXbQxgTa5vY-6gx4uzu_HV-XN3eX1-OymtFzyvoTKOl1homsFVS2UU03DG9fIXPgEasythoYzwYmeWMFoRZjlWkrLHOXCsh10uvLOh3rmGutCH6E18-hnEJemA29-d4J_NNNuYbRSUhCZBUcfgtg9Dy71ZuaTdW0LwXVDMrTSqmJES5HRwz_oUzfEkNczVPL8sVjxNyFdUTZ2KUU3-XoMweYtI7PKyOSMzHtG5iUPHfxc42vkM5QMsBWQcitMXfy--x_tK2vkniM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2740170847</pqid></control><display><type>article</type><title>Nab3 nuclear granule accumulation is driven by respiratory capacity</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hutchinson, Katherine M. ; Hunn, Jeremy C. ; Reines, Daniel</creator><creatorcontrib>Hutchinson, Katherine M. ; Hunn, Jeremy C. ; Reines, Daniel</creatorcontrib><description>Numerous biological processes involve proteins capable of transiently assembling into subcellular compartments necessary for cellular functions. One process is the RNA polymerase II transcription cycle which involves initiation, elongation, co-transcriptional modification of nascent RNA, and termination. The essential yeast transcription termination factor Nab3 is required for termination of small non-coding RNAs and accumulates into a compact nuclear granule upon glucose removal. Nab3 nuclear granule accumulation varies in penetrance across yeast strains and a higher Nab3 granule accumulation phenotype is associated with petite strains, suggesting a possible ATP-dependent mechanism for granule disassembly. Here, we demonstrate the uncoupling of mitochondrial oxidative phosphorylation by drug treatment or deletions of nuclear-encoded ATP synthase subunit genes were sufficient to increase Nab3 granule accumulation and led to an inability to proliferate during prolonged glucose deprivation, which requires respiration. Additionally, by enriching for respiration competent cells from a petite-prone strain, we generated a low granule-accumulating strain from a relatively high one, providing another link between respiratory competency and Nab3 granules. Consistent with the resulting idea that ATP is involved in granule accumulation, the addition of extracellular ATP to semi-permeabilized cells was sufficient to reduce Nab3 granule accumulation. Deleting the
SKY1
gene, which encodes a kinase that phosphorylates nuclear SR repeat-containing proteins and is involved in efficient stress granule disassembly, also resulted in increased granule accumulation. This observation implicates Sky1 in Nab3 granule biogenesis. Taken together, these findings suggest there is normally an equilibrium between termination factor granule assembly and disassembly mediated by ATP-requiring nuclear machinery.</description><identifier>ISSN: 0172-8083</identifier><identifier>EISSN: 1432-0983</identifier><identifier>DOI: 10.1007/s00294-022-01248-w</identifier><identifier>PMID: 35922525</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accumulation ; Adenosine Triphosphate - genetics ; Adenosine Triphosphate - metabolism ; ATP ; ATP synthase ; Biochemistry ; Biological activity ; Biomedical and Life Sciences ; Cell Biology ; Deprivation ; Dismantling ; DNA-directed RNA polymerase ; Elongation ; Glucose ; Glucose - genetics ; Glucose - metabolism ; Granular materials ; Kinases ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Mitochondria ; Nuclear Proteins - genetics ; Original Article ; Oxidative phosphorylation ; Phenotypes ; Phosphorylation ; Plant Sciences ; Protein Serine-Threonine Kinases ; Proteins ; Proteomics ; Respiration ; Ribonucleic acid ; RNA ; RNA modification ; RNA polymerase ; RNA polymerase II ; RNA-Binding Proteins - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Transcription termination ; Yeast ; Yeasts</subject><ispartof>Current genetics, 2022-12, Vol.68 (5-6), p.581-591</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-a6ce96019b8a6b58e8dd4ded7dd44fab04c9ad435419fc532613c4977c3e245c3</citedby><cites>FETCH-LOGICAL-c474t-a6ce96019b8a6b58e8dd4ded7dd44fab04c9ad435419fc532613c4977c3e245c3</cites><orcidid>0000-0003-0832-6243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00294-022-01248-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00294-022-01248-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35922525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hutchinson, Katherine M.</creatorcontrib><creatorcontrib>Hunn, Jeremy C.</creatorcontrib><creatorcontrib>Reines, Daniel</creatorcontrib><title>Nab3 nuclear granule accumulation is driven by respiratory capacity</title><title>Current genetics</title><addtitle>Curr Genet</addtitle><addtitle>Curr Genet</addtitle><description>Numerous biological processes involve proteins capable of transiently assembling into subcellular compartments necessary for cellular functions. One process is the RNA polymerase II transcription cycle which involves initiation, elongation, co-transcriptional modification of nascent RNA, and termination. The essential yeast transcription termination factor Nab3 is required for termination of small non-coding RNAs and accumulates into a compact nuclear granule upon glucose removal. Nab3 nuclear granule accumulation varies in penetrance across yeast strains and a higher Nab3 granule accumulation phenotype is associated with petite strains, suggesting a possible ATP-dependent mechanism for granule disassembly. Here, we demonstrate the uncoupling of mitochondrial oxidative phosphorylation by drug treatment or deletions of nuclear-encoded ATP synthase subunit genes were sufficient to increase Nab3 granule accumulation and led to an inability to proliferate during prolonged glucose deprivation, which requires respiration. Additionally, by enriching for respiration competent cells from a petite-prone strain, we generated a low granule-accumulating strain from a relatively high one, providing another link between respiratory competency and Nab3 granules. Consistent with the resulting idea that ATP is involved in granule accumulation, the addition of extracellular ATP to semi-permeabilized cells was sufficient to reduce Nab3 granule accumulation. Deleting the
SKY1
gene, which encodes a kinase that phosphorylates nuclear SR repeat-containing proteins and is involved in efficient stress granule disassembly, also resulted in increased granule accumulation. This observation implicates Sky1 in Nab3 granule biogenesis. Taken together, these findings suggest there is normally an equilibrium between termination factor granule assembly and disassembly mediated by ATP-requiring nuclear machinery.</description><subject>Accumulation</subject><subject>Adenosine Triphosphate - genetics</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>ATP</subject><subject>ATP synthase</subject><subject>Biochemistry</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Deprivation</subject><subject>Dismantling</subject><subject>DNA-directed RNA polymerase</subject><subject>Elongation</subject><subject>Glucose</subject><subject>Glucose - genetics</subject><subject>Glucose - metabolism</subject><subject>Granular materials</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mitochondria</subject><subject>Nuclear Proteins - genetics</subject><subject>Original Article</subject><subject>Oxidative phosphorylation</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Plant Sciences</subject><subject>Protein Serine-Threonine Kinases</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Respiration</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA modification</subject><subject>RNA polymerase</subject><subject>RNA polymerase II</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Transcription termination</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0172-8083</issn><issn>1432-0983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kclOwzAQhi0EgrK8AAcUiQuXgNfYviChik1CcIGzNXHcYpQ6xU6K-vYYyn7gNLLmm88e_wjtE3xMMJYnCWOqeYkpLTGhXJUva2hEOMtHrdg6GmEiaamwYltoO6UnnCml5SbaYkJTKqgYofEt1KwIg20dxGIaIQytK8DaYTa00PsuFD4VTfQLF4p6WUSX5j5C38VlYWEO1vfLXbQxgTa5vY-6gx4uzu_HV-XN3eX1-OymtFzyvoTKOl1homsFVS2UU03DG9fIXPgEasythoYzwYmeWMFoRZjlWkrLHOXCsh10uvLOh3rmGutCH6E18-hnEJemA29-d4J_NNNuYbRSUhCZBUcfgtg9Dy71ZuaTdW0LwXVDMrTSqmJES5HRwz_oUzfEkNczVPL8sVjxNyFdUTZ2KUU3-XoMweYtI7PKyOSMzHtG5iUPHfxc42vkM5QMsBWQcitMXfy--x_tK2vkniM</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Hutchinson, Katherine M.</creator><creator>Hunn, Jeremy C.</creator><creator>Reines, Daniel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0832-6243</orcidid></search><sort><creationdate>20221201</creationdate><title>Nab3 nuclear granule accumulation is driven by respiratory capacity</title><author>Hutchinson, Katherine M. ; Hunn, Jeremy C. ; Reines, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-a6ce96019b8a6b58e8dd4ded7dd44fab04c9ad435419fc532613c4977c3e245c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accumulation</topic><topic>Adenosine Triphosphate - genetics</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>ATP</topic><topic>ATP synthase</topic><topic>Biochemistry</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Deprivation</topic><topic>Dismantling</topic><topic>DNA-directed RNA polymerase</topic><topic>Elongation</topic><topic>Glucose</topic><topic>Glucose - genetics</topic><topic>Glucose - metabolism</topic><topic>Granular materials</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mitochondria</topic><topic>Nuclear Proteins - genetics</topic><topic>Original Article</topic><topic>Oxidative phosphorylation</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Plant Sciences</topic><topic>Protein Serine-Threonine Kinases</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Respiration</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA modification</topic><topic>RNA polymerase</topic><topic>RNA polymerase II</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Transcription termination</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hutchinson, Katherine M.</creatorcontrib><creatorcontrib>Hunn, Jeremy C.</creatorcontrib><creatorcontrib>Reines, Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hutchinson, Katherine M.</au><au>Hunn, Jeremy C.</au><au>Reines, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nab3 nuclear granule accumulation is driven by respiratory capacity</atitle><jtitle>Current genetics</jtitle><stitle>Curr Genet</stitle><addtitle>Curr Genet</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>68</volume><issue>5-6</issue><spage>581</spage><epage>591</epage><pages>581-591</pages><issn>0172-8083</issn><eissn>1432-0983</eissn><abstract>Numerous biological processes involve proteins capable of transiently assembling into subcellular compartments necessary for cellular functions. One process is the RNA polymerase II transcription cycle which involves initiation, elongation, co-transcriptional modification of nascent RNA, and termination. The essential yeast transcription termination factor Nab3 is required for termination of small non-coding RNAs and accumulates into a compact nuclear granule upon glucose removal. Nab3 nuclear granule accumulation varies in penetrance across yeast strains and a higher Nab3 granule accumulation phenotype is associated with petite strains, suggesting a possible ATP-dependent mechanism for granule disassembly. Here, we demonstrate the uncoupling of mitochondrial oxidative phosphorylation by drug treatment or deletions of nuclear-encoded ATP synthase subunit genes were sufficient to increase Nab3 granule accumulation and led to an inability to proliferate during prolonged glucose deprivation, which requires respiration. Additionally, by enriching for respiration competent cells from a petite-prone strain, we generated a low granule-accumulating strain from a relatively high one, providing another link between respiratory competency and Nab3 granules. Consistent with the resulting idea that ATP is involved in granule accumulation, the addition of extracellular ATP to semi-permeabilized cells was sufficient to reduce Nab3 granule accumulation. Deleting the
SKY1
gene, which encodes a kinase that phosphorylates nuclear SR repeat-containing proteins and is involved in efficient stress granule disassembly, also resulted in increased granule accumulation. This observation implicates Sky1 in Nab3 granule biogenesis. Taken together, these findings suggest there is normally an equilibrium between termination factor granule assembly and disassembly mediated by ATP-requiring nuclear machinery.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35922525</pmid><doi>10.1007/s00294-022-01248-w</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0832-6243</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0172-8083 |
ispartof | Current genetics, 2022-12, Vol.68 (5-6), p.581-591 |
issn | 0172-8083 1432-0983 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9887517 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Accumulation Adenosine Triphosphate - genetics Adenosine Triphosphate - metabolism ATP ATP synthase Biochemistry Biological activity Biomedical and Life Sciences Cell Biology Deprivation Dismantling DNA-directed RNA polymerase Elongation Glucose Glucose - genetics Glucose - metabolism Granular materials Kinases Life Sciences Microbial Genetics and Genomics Microbiology Mitochondria Nuclear Proteins - genetics Original Article Oxidative phosphorylation Phenotypes Phosphorylation Plant Sciences Protein Serine-Threonine Kinases Proteins Proteomics Respiration Ribonucleic acid RNA RNA modification RNA polymerase RNA polymerase II RNA-Binding Proteins - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Transcription termination Yeast Yeasts |
title | Nab3 nuclear granule accumulation is driven by respiratory capacity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nab3%20nuclear%20granule%20accumulation%20is%20driven%20by%20respiratory%20capacity&rft.jtitle=Current%20genetics&rft.au=Hutchinson,%20Katherine%20M.&rft.date=2022-12-01&rft.volume=68&rft.issue=5-6&rft.spage=581&rft.epage=591&rft.pages=581-591&rft.issn=0172-8083&rft.eissn=1432-0983&rft_id=info:doi/10.1007/s00294-022-01248-w&rft_dat=%3Cproquest_pubme%3E2698631975%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2740170847&rft_id=info:pmid/35922525&rfr_iscdi=true |