Development of bioinformatics and multi-omics analyses in organoids
Pre-clinical models are critical in gaining mechanistic and biological insights into disease progression. Recently, patient-derived organoid models have been developed to facilitate our understanding of disease development and to improve the discovery of therapeutic options by faithfully recapitulat...
Gespeichert in:
Veröffentlicht in: | BMB Reports 2023-01, Vol.56 (1), p.43-48 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | 1 |
container_start_page | 43 |
container_title | BMB Reports |
container_volume | 56 |
creator | Ha, Doyeon Kong, JungHo Kim, Donghyo Lee, Kwanghwan Lee, Juhun Park, Minhyuk Ahn, Hyunsoo Oh, Youngchul Kim, Sanguk |
description | Pre-clinical models are critical in gaining mechanistic and biological insights into disease progression. Recently, patient-derived organoid models have been developed to facilitate our understanding of disease development and to improve the discovery of therapeutic options by faithfully recapitulating in vivo tissues or organs. As technological developments of organoid models are rapidly growing, computational methods are gaining attention in organoid researchers to improve the ability to systematically analyze experimental results. In this review, we summarize the recent advances in organoid models to recapitulate human diseases and computational advancements to analyze experimental results from organoids. [BMB Reports 2023; 56(1): 43-48]. |
doi_str_mv | 10.5483/BMBRep.2022-0155 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9887100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729028417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-c66e515a1aad9cedf7fe5efd465db5fb41695b81b23cc08837ac2e07817e08aa3</originalsourceid><addsrcrecordid>eNpVkN9LwzAQx4Mobsy9-yR99KUzaZomfRHc_AkTQRR8C2l6mYG2mUk72H9vR-eYT3fHfe97Xz4IXRI8Y6mgN_PX-TusZwlOkhgTxk7QmOQ8izOOv06P-hGahmALzCjlGRf5ORrRLBFpmuIxWtzDBiq3rqFpI2eiwjrbGOdr1VodItWUUd1VrY1dPcyq2gYIkW0i51eqcbYMF-jMqCrAdF8n6PPx4WPxHC_fnl4Wd8tY0zRvY51lwAhTRKky11AaboCBKdOMlQUzRUqynBWCFAnVGgtBudIJYC4IByyUohN0O_iuu6KGUveRvark2tta-a10ysr_m8Z-y5XbyFwITjDuDa73Bt79dBBaWdugoapUA64LMuFJjnsyhPdSPEi1dyF4MIc3BMsdfjnglzv8coe_P7k6jnc4-INNfwH3Z4PZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729028417</pqid></control><display><type>article</type><title>Development of bioinformatics and multi-omics analyses in organoids</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ha, Doyeon ; Kong, JungHo ; Kim, Donghyo ; Lee, Kwanghwan ; Lee, Juhun ; Park, Minhyuk ; Ahn, Hyunsoo ; Oh, Youngchul ; Kim, Sanguk</creator><creatorcontrib>Ha, Doyeon ; Kong, JungHo ; Kim, Donghyo ; Lee, Kwanghwan ; Lee, Juhun ; Park, Minhyuk ; Ahn, Hyunsoo ; Oh, Youngchul ; Kim, Sanguk</creatorcontrib><description>Pre-clinical models are critical in gaining mechanistic and biological insights into disease progression. Recently, patient-derived organoid models have been developed to facilitate our understanding of disease development and to improve the discovery of therapeutic options by faithfully recapitulating in vivo tissues or organs. As technological developments of organoid models are rapidly growing, computational methods are gaining attention in organoid researchers to improve the ability to systematically analyze experimental results. In this review, we summarize the recent advances in organoid models to recapitulate human diseases and computational advancements to analyze experimental results from organoids. [BMB Reports 2023; 56(1): 43-48].</description><identifier>ISSN: 1976-670X</identifier><identifier>ISSN: 1976-6696</identifier><identifier>EISSN: 1976-670X</identifier><identifier>DOI: 10.5483/BMBRep.2022-0155</identifier><identifier>PMID: 36284440</identifier><language>eng</language><publisher>Korea (South): Korean Society for Biochemistry and Molecular Biology</publisher><subject>Computational Biology ; Humans ; Invited Mini Review ; Multiomics ; Organoids</subject><ispartof>BMB Reports, 2023-01, Vol.56 (1), p.43-48</ispartof><rights>Copyright © 2023 by the The Korean Society for Biochemistry and Molecular Biology 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c349t-c66e515a1aad9cedf7fe5efd465db5fb41695b81b23cc08837ac2e07817e08aa3</cites><orcidid>0000-0003-3466-2638 ; 0000-0003-2749-8665 ; 0000-0001-7778-0592 ; 0000-0002-3683-0378 ; 0000-0002-6574-7311 ; 0000-0002-3532-3163 ; 0000-0003-2232-1983 ; 0000-0002-8097-3675 ; 0000-0002-3449-3814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887100/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887100/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36284440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ha, Doyeon</creatorcontrib><creatorcontrib>Kong, JungHo</creatorcontrib><creatorcontrib>Kim, Donghyo</creatorcontrib><creatorcontrib>Lee, Kwanghwan</creatorcontrib><creatorcontrib>Lee, Juhun</creatorcontrib><creatorcontrib>Park, Minhyuk</creatorcontrib><creatorcontrib>Ahn, Hyunsoo</creatorcontrib><creatorcontrib>Oh, Youngchul</creatorcontrib><creatorcontrib>Kim, Sanguk</creatorcontrib><title>Development of bioinformatics and multi-omics analyses in organoids</title><title>BMB Reports</title><addtitle>BMB Rep</addtitle><description>Pre-clinical models are critical in gaining mechanistic and biological insights into disease progression. Recently, patient-derived organoid models have been developed to facilitate our understanding of disease development and to improve the discovery of therapeutic options by faithfully recapitulating in vivo tissues or organs. As technological developments of organoid models are rapidly growing, computational methods are gaining attention in organoid researchers to improve the ability to systematically analyze experimental results. In this review, we summarize the recent advances in organoid models to recapitulate human diseases and computational advancements to analyze experimental results from organoids. [BMB Reports 2023; 56(1): 43-48].</description><subject>Computational Biology</subject><subject>Humans</subject><subject>Invited Mini Review</subject><subject>Multiomics</subject><subject>Organoids</subject><issn>1976-670X</issn><issn>1976-6696</issn><issn>1976-670X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkN9LwzAQx4Mobsy9-yR99KUzaZomfRHc_AkTQRR8C2l6mYG2mUk72H9vR-eYT3fHfe97Xz4IXRI8Y6mgN_PX-TusZwlOkhgTxk7QmOQ8izOOv06P-hGahmALzCjlGRf5ORrRLBFpmuIxWtzDBiq3rqFpI2eiwjrbGOdr1VodItWUUd1VrY1dPcyq2gYIkW0i51eqcbYMF-jMqCrAdF8n6PPx4WPxHC_fnl4Wd8tY0zRvY51lwAhTRKky11AaboCBKdOMlQUzRUqynBWCFAnVGgtBudIJYC4IByyUohN0O_iuu6KGUveRvark2tta-a10ysr_m8Z-y5XbyFwITjDuDa73Bt79dBBaWdugoapUA64LMuFJjnsyhPdSPEi1dyF4MIc3BMsdfjnglzv8coe_P7k6jnc4-INNfwH3Z4PZ</recordid><startdate>20230131</startdate><enddate>20230131</enddate><creator>Ha, Doyeon</creator><creator>Kong, JungHo</creator><creator>Kim, Donghyo</creator><creator>Lee, Kwanghwan</creator><creator>Lee, Juhun</creator><creator>Park, Minhyuk</creator><creator>Ahn, Hyunsoo</creator><creator>Oh, Youngchul</creator><creator>Kim, Sanguk</creator><general>Korean Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3466-2638</orcidid><orcidid>https://orcid.org/0000-0003-2749-8665</orcidid><orcidid>https://orcid.org/0000-0001-7778-0592</orcidid><orcidid>https://orcid.org/0000-0002-3683-0378</orcidid><orcidid>https://orcid.org/0000-0002-6574-7311</orcidid><orcidid>https://orcid.org/0000-0002-3532-3163</orcidid><orcidid>https://orcid.org/0000-0003-2232-1983</orcidid><orcidid>https://orcid.org/0000-0002-8097-3675</orcidid><orcidid>https://orcid.org/0000-0002-3449-3814</orcidid></search><sort><creationdate>20230131</creationdate><title>Development of bioinformatics and multi-omics analyses in organoids</title><author>Ha, Doyeon ; Kong, JungHo ; Kim, Donghyo ; Lee, Kwanghwan ; Lee, Juhun ; Park, Minhyuk ; Ahn, Hyunsoo ; Oh, Youngchul ; Kim, Sanguk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-c66e515a1aad9cedf7fe5efd465db5fb41695b81b23cc08837ac2e07817e08aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational Biology</topic><topic>Humans</topic><topic>Invited Mini Review</topic><topic>Multiomics</topic><topic>Organoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Doyeon</creatorcontrib><creatorcontrib>Kong, JungHo</creatorcontrib><creatorcontrib>Kim, Donghyo</creatorcontrib><creatorcontrib>Lee, Kwanghwan</creatorcontrib><creatorcontrib>Lee, Juhun</creatorcontrib><creatorcontrib>Park, Minhyuk</creatorcontrib><creatorcontrib>Ahn, Hyunsoo</creatorcontrib><creatorcontrib>Oh, Youngchul</creatorcontrib><creatorcontrib>Kim, Sanguk</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMB Reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ha, Doyeon</au><au>Kong, JungHo</au><au>Kim, Donghyo</au><au>Lee, Kwanghwan</au><au>Lee, Juhun</au><au>Park, Minhyuk</au><au>Ahn, Hyunsoo</au><au>Oh, Youngchul</au><au>Kim, Sanguk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of bioinformatics and multi-omics analyses in organoids</atitle><jtitle>BMB Reports</jtitle><addtitle>BMB Rep</addtitle><date>2023-01-31</date><risdate>2023</risdate><volume>56</volume><issue>1</issue><spage>43</spage><epage>48</epage><pages>43-48</pages><issn>1976-670X</issn><issn>1976-6696</issn><eissn>1976-670X</eissn><abstract>Pre-clinical models are critical in gaining mechanistic and biological insights into disease progression. Recently, patient-derived organoid models have been developed to facilitate our understanding of disease development and to improve the discovery of therapeutic options by faithfully recapitulating in vivo tissues or organs. As technological developments of organoid models are rapidly growing, computational methods are gaining attention in organoid researchers to improve the ability to systematically analyze experimental results. In this review, we summarize the recent advances in organoid models to recapitulate human diseases and computational advancements to analyze experimental results from organoids. [BMB Reports 2023; 56(1): 43-48].</abstract><cop>Korea (South)</cop><pub>Korean Society for Biochemistry and Molecular Biology</pub><pmid>36284440</pmid><doi>10.5483/BMBRep.2022-0155</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3466-2638</orcidid><orcidid>https://orcid.org/0000-0003-2749-8665</orcidid><orcidid>https://orcid.org/0000-0001-7778-0592</orcidid><orcidid>https://orcid.org/0000-0002-3683-0378</orcidid><orcidid>https://orcid.org/0000-0002-6574-7311</orcidid><orcidid>https://orcid.org/0000-0002-3532-3163</orcidid><orcidid>https://orcid.org/0000-0003-2232-1983</orcidid><orcidid>https://orcid.org/0000-0002-8097-3675</orcidid><orcidid>https://orcid.org/0000-0002-3449-3814</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1976-670X |
ispartof | BMB Reports, 2023-01, Vol.56 (1), p.43-48 |
issn | 1976-670X 1976-6696 1976-670X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9887100 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Computational Biology Humans Invited Mini Review Multiomics Organoids |
title | Development of bioinformatics and multi-omics analyses in organoids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20bioinformatics%20and%20multi-omics%20analyses%20in%20organoids&rft.jtitle=BMB%20Reports&rft.au=Ha,%20Doyeon&rft.date=2023-01-31&rft.volume=56&rft.issue=1&rft.spage=43&rft.epage=48&rft.pages=43-48&rft.issn=1976-670X&rft.eissn=1976-670X&rft_id=info:doi/10.5483/BMBRep.2022-0155&rft_dat=%3Cproquest_pubme%3E2729028417%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729028417&rft_id=info:pmid/36284440&rfr_iscdi=true |