A deep reinforcement learning-based wireless body area network offloading optimization strategy for healthcare services

Wireless body area network (WBAN) is widely adopted in healthcare services, providing remote real-time and continuous healthcare monitoring. With the massive increase of detective sensor data, WBAN is largely restricted by limited storage and computation capacity, resulting in severely decreased eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Health information science and systems 2023-01, Vol.11 (1), p.8, Article 8
Hauptverfasser: Chen, Yingqun, Han, Shaodong, Chen, Guihong, Yin, Jiao, Wang, Kate Nana, Cao, Jinli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 8
container_title Health information science and systems
container_volume 11
creator Chen, Yingqun
Han, Shaodong
Chen, Guihong
Yin, Jiao
Wang, Kate Nana
Cao, Jinli
description Wireless body area network (WBAN) is widely adopted in healthcare services, providing remote real-time and continuous healthcare monitoring. With the massive increase of detective sensor data, WBAN is largely restricted by limited storage and computation capacity, resulting in severely decreased efficiency and reliability. Mobile edge computing (MEC) technique can be combined with WBAN to resolve this issue. This paper studies the joint optimization problem of computational offloading and resource allocation (JCORA) in MEC for healthcare service scenarios. We formulate JCORA as a Markov decision process and propose a deep deterministic policy gradient-based WBAN offloading strategy (DDPG-WOS) to optimize time delay and energy consumption in interfered transmission channels. This scheme employs MEC to mitigate the computation pressure on a single WBAN and increase the transmission ability. Further, DDPG-WOS optimizes the offloading strategy-making process by considering the channel condition, transmission quality, computation ability and energy consumption. Simulation results verify the effectiveness of the proposed optimization schema in reducing energy consumption and computation latency and increasing the utility of WBAN compared to two competitive solutions.
doi_str_mv 10.1007/s13755-023-00212-3
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9884307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A735063713</galeid><sourcerecordid>A735063713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-2569ab7330d857b89efdb26e6401231029e98f1f2969b98c51d5b3c2e299b9873</originalsourceid><addsrcrecordid>eNp9kktv1DAUhS0EolXpH2CBLLFhk-LHJI43SKOKl1SJDawtx77OuDj2YGc6Gn49DlP6QIh4kTj-zknO1UHoJSUXlBDxtlAu2rYhjDeEMMoa_gSdMrISDWsJffrg-QSdl3JN6iUp4y19jk54JxjtuDxF-zW2AFucwUeXsoEJ4owD6Bx9HJtBF7B47zMEKAUPyR6wzqBxhHmf8necnAtJ28ritJ395H_q2aeIy5z1DOMBV1O8AR3mjalCXCDfeAPlBXrmdChwfns_Q98-vP96-am5-vLx8-X6qjHtis71_zupB8E5sX0rhl6CswProFuRmoUSJkH2jjomOznI3rTUtgM3DJhc9oKfoXdH3-1umMCami7roLbZTzofVNJePT6JfqPGdKNk3684WQze3Brk9GMHZVaTLwZC0BHSrigmxDJJ0dGKvv4LvU67HGu8hSJcsJrpnhp1ALVMvX7XLKZqLXhLOi4or9TFP6i6LEzepAjO1_ePBOwoMDmVksHdZaRELY1Rx8ao2hj1uzFqEb16OJ07yZ9-VIAfgVKP4gj5PtJ_bH8BF0nMFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770372541</pqid></control><display><type>article</type><title>A deep reinforcement learning-based wireless body area network offloading optimization strategy for healthcare services</title><source>SpringerLink Journals</source><source>PubMed Central</source><creator>Chen, Yingqun ; Han, Shaodong ; Chen, Guihong ; Yin, Jiao ; Wang, Kate Nana ; Cao, Jinli</creator><creatorcontrib>Chen, Yingqun ; Han, Shaodong ; Chen, Guihong ; Yin, Jiao ; Wang, Kate Nana ; Cao, Jinli</creatorcontrib><description>Wireless body area network (WBAN) is widely adopted in healthcare services, providing remote real-time and continuous healthcare monitoring. With the massive increase of detective sensor data, WBAN is largely restricted by limited storage and computation capacity, resulting in severely decreased efficiency and reliability. Mobile edge computing (MEC) technique can be combined with WBAN to resolve this issue. This paper studies the joint optimization problem of computational offloading and resource allocation (JCORA) in MEC for healthcare service scenarios. We formulate JCORA as a Markov decision process and propose a deep deterministic policy gradient-based WBAN offloading strategy (DDPG-WOS) to optimize time delay and energy consumption in interfered transmission channels. This scheme employs MEC to mitigate the computation pressure on a single WBAN and increase the transmission ability. Further, DDPG-WOS optimizes the offloading strategy-making process by considering the channel condition, transmission quality, computation ability and energy consumption. Simulation results verify the effectiveness of the proposed optimization schema in reducing energy consumption and computation latency and increasing the utility of WBAN compared to two competitive solutions.</description><identifier>ISSN: 2047-2501</identifier><identifier>EISSN: 2047-2501</identifier><identifier>DOI: 10.1007/s13755-023-00212-3</identifier><identifier>PMID: 36721639</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Bioinformatics ; Body area networks ; Computation offloading ; Computational Biology/Bioinformatics ; Computer Science ; Edge computing ; Energy conservation ; Energy consumption ; Health care ; Health care industry ; Health Informatics ; Health services ; Information Systems and Communication Service ; Machine learning ; Markov processes ; Mobile computing ; Network latency ; Optimization ; Resource allocation ; Sensors ; Strategy ; Time lag</subject><ispartof>Health information science and systems, 2023-01, Vol.11 (1), p.8, Article 8</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-2569ab7330d857b89efdb26e6401231029e98f1f2969b98c51d5b3c2e299b9873</citedby><cites>FETCH-LOGICAL-c541t-2569ab7330d857b89efdb26e6401231029e98f1f2969b98c51d5b3c2e299b9873</cites><orcidid>0000-0002-0760-7011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884307/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9884307/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36721639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Yingqun</creatorcontrib><creatorcontrib>Han, Shaodong</creatorcontrib><creatorcontrib>Chen, Guihong</creatorcontrib><creatorcontrib>Yin, Jiao</creatorcontrib><creatorcontrib>Wang, Kate Nana</creatorcontrib><creatorcontrib>Cao, Jinli</creatorcontrib><title>A deep reinforcement learning-based wireless body area network offloading optimization strategy for healthcare services</title><title>Health information science and systems</title><addtitle>Health Inf Sci Syst</addtitle><addtitle>Health Inf Sci Syst</addtitle><description>Wireless body area network (WBAN) is widely adopted in healthcare services, providing remote real-time and continuous healthcare monitoring. With the massive increase of detective sensor data, WBAN is largely restricted by limited storage and computation capacity, resulting in severely decreased efficiency and reliability. Mobile edge computing (MEC) technique can be combined with WBAN to resolve this issue. This paper studies the joint optimization problem of computational offloading and resource allocation (JCORA) in MEC for healthcare service scenarios. We formulate JCORA as a Markov decision process and propose a deep deterministic policy gradient-based WBAN offloading strategy (DDPG-WOS) to optimize time delay and energy consumption in interfered transmission channels. This scheme employs MEC to mitigate the computation pressure on a single WBAN and increase the transmission ability. Further, DDPG-WOS optimizes the offloading strategy-making process by considering the channel condition, transmission quality, computation ability and energy consumption. Simulation results verify the effectiveness of the proposed optimization schema in reducing energy consumption and computation latency and increasing the utility of WBAN compared to two competitive solutions.</description><subject>Bioinformatics</subject><subject>Body area networks</subject><subject>Computation offloading</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Science</subject><subject>Edge computing</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Health care</subject><subject>Health care industry</subject><subject>Health Informatics</subject><subject>Health services</subject><subject>Information Systems and Communication Service</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Mobile computing</subject><subject>Network latency</subject><subject>Optimization</subject><subject>Resource allocation</subject><subject>Sensors</subject><subject>Strategy</subject><subject>Time lag</subject><issn>2047-2501</issn><issn>2047-2501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kktv1DAUhS0EolXpH2CBLLFhk-LHJI43SKOKl1SJDawtx77OuDj2YGc6Gn49DlP6QIh4kTj-zknO1UHoJSUXlBDxtlAu2rYhjDeEMMoa_gSdMrISDWsJffrg-QSdl3JN6iUp4y19jk54JxjtuDxF-zW2AFucwUeXsoEJ4owD6Bx9HJtBF7B47zMEKAUPyR6wzqBxhHmf8necnAtJ28ritJ395H_q2aeIy5z1DOMBV1O8AR3mjalCXCDfeAPlBXrmdChwfns_Q98-vP96-am5-vLx8-X6qjHtis71_zupB8E5sX0rhl6CswProFuRmoUSJkH2jjomOznI3rTUtgM3DJhc9oKfoXdH3-1umMCami7roLbZTzofVNJePT6JfqPGdKNk3684WQze3Brk9GMHZVaTLwZC0BHSrigmxDJJ0dGKvv4LvU67HGu8hSJcsJrpnhp1ALVMvX7XLKZqLXhLOi4or9TFP6i6LEzepAjO1_ePBOwoMDmVksHdZaRELY1Rx8ao2hj1uzFqEb16OJ07yZ9-VIAfgVKP4gj5PtJ_bH8BF0nMFQ</recordid><startdate>20230128</startdate><enddate>20230128</enddate><creator>Chen, Yingqun</creator><creator>Han, Shaodong</creator><creator>Chen, Guihong</creator><creator>Yin, Jiao</creator><creator>Wang, Kate Nana</creator><creator>Cao, Jinli</creator><general>Springer International Publishing</general><general>BioMed Central Ltd</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>M0N</scope><scope>M0S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0760-7011</orcidid></search><sort><creationdate>20230128</creationdate><title>A deep reinforcement learning-based wireless body area network offloading optimization strategy for healthcare services</title><author>Chen, Yingqun ; Han, Shaodong ; Chen, Guihong ; Yin, Jiao ; Wang, Kate Nana ; Cao, Jinli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-2569ab7330d857b89efdb26e6401231029e98f1f2969b98c51d5b3c2e299b9873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bioinformatics</topic><topic>Body area networks</topic><topic>Computation offloading</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Science</topic><topic>Edge computing</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Health care</topic><topic>Health care industry</topic><topic>Health Informatics</topic><topic>Health services</topic><topic>Information Systems and Communication Service</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Mobile computing</topic><topic>Network latency</topic><topic>Optimization</topic><topic>Resource allocation</topic><topic>Sensors</topic><topic>Strategy</topic><topic>Time lag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yingqun</creatorcontrib><creatorcontrib>Han, Shaodong</creatorcontrib><creatorcontrib>Chen, Guihong</creatorcontrib><creatorcontrib>Yin, Jiao</creatorcontrib><creatorcontrib>Wang, Kate Nana</creatorcontrib><creatorcontrib>Cao, Jinli</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Health information science and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yingqun</au><au>Han, Shaodong</au><au>Chen, Guihong</au><au>Yin, Jiao</au><au>Wang, Kate Nana</au><au>Cao, Jinli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deep reinforcement learning-based wireless body area network offloading optimization strategy for healthcare services</atitle><jtitle>Health information science and systems</jtitle><stitle>Health Inf Sci Syst</stitle><addtitle>Health Inf Sci Syst</addtitle><date>2023-01-28</date><risdate>2023</risdate><volume>11</volume><issue>1</issue><spage>8</spage><pages>8-</pages><artnum>8</artnum><issn>2047-2501</issn><eissn>2047-2501</eissn><abstract>Wireless body area network (WBAN) is widely adopted in healthcare services, providing remote real-time and continuous healthcare monitoring. With the massive increase of detective sensor data, WBAN is largely restricted by limited storage and computation capacity, resulting in severely decreased efficiency and reliability. Mobile edge computing (MEC) technique can be combined with WBAN to resolve this issue. This paper studies the joint optimization problem of computational offloading and resource allocation (JCORA) in MEC for healthcare service scenarios. We formulate JCORA as a Markov decision process and propose a deep deterministic policy gradient-based WBAN offloading strategy (DDPG-WOS) to optimize time delay and energy consumption in interfered transmission channels. This scheme employs MEC to mitigate the computation pressure on a single WBAN and increase the transmission ability. Further, DDPG-WOS optimizes the offloading strategy-making process by considering the channel condition, transmission quality, computation ability and energy consumption. Simulation results verify the effectiveness of the proposed optimization schema in reducing energy consumption and computation latency and increasing the utility of WBAN compared to two competitive solutions.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>36721639</pmid><doi>10.1007/s13755-023-00212-3</doi><orcidid>https://orcid.org/0000-0002-0760-7011</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-2501
ispartof Health information science and systems, 2023-01, Vol.11 (1), p.8, Article 8
issn 2047-2501
2047-2501
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9884307
source SpringerLink Journals; PubMed Central
subjects Bioinformatics
Body area networks
Computation offloading
Computational Biology/Bioinformatics
Computer Science
Edge computing
Energy conservation
Energy consumption
Health care
Health care industry
Health Informatics
Health services
Information Systems and Communication Service
Machine learning
Markov processes
Mobile computing
Network latency
Optimization
Resource allocation
Sensors
Strategy
Time lag
title A deep reinforcement learning-based wireless body area network offloading optimization strategy for healthcare services
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A37%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deep%20reinforcement%20learning-based%20wireless%20body%20area%20network%20offloading%20optimization%20strategy%20for%20healthcare%20services&rft.jtitle=Health%20information%20science%20and%20systems&rft.au=Chen,%20Yingqun&rft.date=2023-01-28&rft.volume=11&rft.issue=1&rft.spage=8&rft.pages=8-&rft.artnum=8&rft.issn=2047-2501&rft.eissn=2047-2501&rft_id=info:doi/10.1007/s13755-023-00212-3&rft_dat=%3Cgale_pubme%3EA735063713%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770372541&rft_id=info:pmid/36721639&rft_galeid=A735063713&rfr_iscdi=true