BBKNN: fast batch alignment of single cell transcriptomes

Abstract Motivation Increasing numbers of large scale single cell RNA-Seq projects are leading to a data explosion, which can only be fully exploited through data integration. A number of methods have been developed to combine diverse datasets by removing technical batch effects, but most are comput...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2020-02, Vol.36 (3), p.964-965
Hauptverfasser: Polański, Krzysztof, Young, Matthew D, Miao, Zhichao, Meyer, Kerstin B, Teichmann, Sarah A, Park, Jong-Eun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 965
container_issue 3
container_start_page 964
container_title Bioinformatics
container_volume 36
creator Polański, Krzysztof
Young, Matthew D
Miao, Zhichao
Meyer, Kerstin B
Teichmann, Sarah A
Park, Jong-Eun
description Abstract Motivation Increasing numbers of large scale single cell RNA-Seq projects are leading to a data explosion, which can only be fully exploited through data integration. A number of methods have been developed to combine diverse datasets by removing technical batch effects, but most are computationally intensive. To overcome the challenge of enormous datasets, we have developed BBKNN, an extremely fast graph-based data integration algorithm. We illustrate the power of BBKNN on large scale mouse atlasing data, and favourably benchmark its run time against a number of competing methods. Availability and implementation BBKNN is available at https://github.com/Teichlab/bbknn, along with documentation and multiple example notebooks, and can be installed from pip. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btz625
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9883685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btz625</oup_id><sourcerecordid>2271831494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-4fa1afbf3325e21a50b308623c3672a877f4d159b01601e90ab2fc38621dbee73</originalsourceid><addsrcrecordid>eNqNkEtPAyEYRYnR2Fr9CZpZuhnLcx4uTGzjKzZ1o2sCFFrMzFCBmuivl6a1sTtXkHC-y_0OAOcIXiFYk6G0znbG-VZEq8JQxu8CswPQR7SAOYasPkx3UpQ5rSDpgZMQ3iFkiFJ6DHoEUQhRXfZBPRo9T6fXmREhZlJEtchEY-ddq7uYOZMF280bnSndNFn0ogvK22V0rQ6n4MiIJuiz7TkAb_d3r-PHfPLy8DS-neSKoSrm1AgkjDSEYKYxEgxKAqsCE5XKYVGVpaEzxGoJUQGRrqGQ2CiSCDSTWpdkAG42ucuVbPVMpWJeNHzpbSv8F3fC8v2Xzi743H3yuqpIUbEUcLkN8O5jpUPkrQ3rhUSn3SpwjEtUJSM1TSjboMq7ELw2u28Q5GvtfF8732hPcxd_O-6mfj0nAG4At1r-M_MHGueVnQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2271831494</pqid></control><display><type>article</type><title>BBKNN: fast batch alignment of single cell transcriptomes</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Polański, Krzysztof ; Young, Matthew D ; Miao, Zhichao ; Meyer, Kerstin B ; Teichmann, Sarah A ; Park, Jong-Eun</creator><contributor>Berger, Bonnie</contributor><creatorcontrib>Polański, Krzysztof ; Young, Matthew D ; Miao, Zhichao ; Meyer, Kerstin B ; Teichmann, Sarah A ; Park, Jong-Eun ; Berger, Bonnie</creatorcontrib><description>Abstract Motivation Increasing numbers of large scale single cell RNA-Seq projects are leading to a data explosion, which can only be fully exploited through data integration. A number of methods have been developed to combine diverse datasets by removing technical batch effects, but most are computationally intensive. To overcome the challenge of enormous datasets, we have developed BBKNN, an extremely fast graph-based data integration algorithm. We illustrate the power of BBKNN on large scale mouse atlasing data, and favourably benchmark its run time against a number of competing methods. Availability and implementation BBKNN is available at https://github.com/Teichlab/bbknn, along with documentation and multiple example notebooks, and can be installed from pip. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btz625</identifier><identifier>PMID: 31400197</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Animals ; Applications Note ; Exome Sequencing ; Mice ; RNA-Seq ; Transcriptome</subject><ispartof>Bioinformatics, 2020-02, Vol.36 (3), p.964-965</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-4fa1afbf3325e21a50b308623c3672a877f4d159b01601e90ab2fc38621dbee73</citedby><cites>FETCH-LOGICAL-c518t-4fa1afbf3325e21a50b308623c3672a877f4d159b01601e90ab2fc38621dbee73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883685/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883685/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31400197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Berger, Bonnie</contributor><creatorcontrib>Polański, Krzysztof</creatorcontrib><creatorcontrib>Young, Matthew D</creatorcontrib><creatorcontrib>Miao, Zhichao</creatorcontrib><creatorcontrib>Meyer, Kerstin B</creatorcontrib><creatorcontrib>Teichmann, Sarah A</creatorcontrib><creatorcontrib>Park, Jong-Eun</creatorcontrib><title>BBKNN: fast batch alignment of single cell transcriptomes</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Increasing numbers of large scale single cell RNA-Seq projects are leading to a data explosion, which can only be fully exploited through data integration. A number of methods have been developed to combine diverse datasets by removing technical batch effects, but most are computationally intensive. To overcome the challenge of enormous datasets, we have developed BBKNN, an extremely fast graph-based data integration algorithm. We illustrate the power of BBKNN on large scale mouse atlasing data, and favourably benchmark its run time against a number of competing methods. Availability and implementation BBKNN is available at https://github.com/Teichlab/bbknn, along with documentation and multiple example notebooks, and can be installed from pip. Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Applications Note</subject><subject>Exome Sequencing</subject><subject>Mice</subject><subject>RNA-Seq</subject><subject>Transcriptome</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkEtPAyEYRYnR2Fr9CZpZuhnLcx4uTGzjKzZ1o2sCFFrMzFCBmuivl6a1sTtXkHC-y_0OAOcIXiFYk6G0znbG-VZEq8JQxu8CswPQR7SAOYasPkx3UpQ5rSDpgZMQ3iFkiFJ6DHoEUQhRXfZBPRo9T6fXmREhZlJEtchEY-ddq7uYOZMF280bnSndNFn0ogvK22V0rQ6n4MiIJuiz7TkAb_d3r-PHfPLy8DS-neSKoSrm1AgkjDSEYKYxEgxKAqsCE5XKYVGVpaEzxGoJUQGRrqGQ2CiSCDSTWpdkAG42ucuVbPVMpWJeNHzpbSv8F3fC8v2Xzi743H3yuqpIUbEUcLkN8O5jpUPkrQ3rhUSn3SpwjEtUJSM1TSjboMq7ELw2u28Q5GvtfF8732hPcxd_O-6mfj0nAG4At1r-M_MHGueVnQ</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Polański, Krzysztof</creator><creator>Young, Matthew D</creator><creator>Miao, Zhichao</creator><creator>Meyer, Kerstin B</creator><creator>Teichmann, Sarah A</creator><creator>Park, Jong-Eun</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200201</creationdate><title>BBKNN: fast batch alignment of single cell transcriptomes</title><author>Polański, Krzysztof ; Young, Matthew D ; Miao, Zhichao ; Meyer, Kerstin B ; Teichmann, Sarah A ; Park, Jong-Eun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-4fa1afbf3325e21a50b308623c3672a877f4d159b01601e90ab2fc38621dbee73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Applications Note</topic><topic>Exome Sequencing</topic><topic>Mice</topic><topic>RNA-Seq</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polański, Krzysztof</creatorcontrib><creatorcontrib>Young, Matthew D</creatorcontrib><creatorcontrib>Miao, Zhichao</creatorcontrib><creatorcontrib>Meyer, Kerstin B</creatorcontrib><creatorcontrib>Teichmann, Sarah A</creatorcontrib><creatorcontrib>Park, Jong-Eun</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polański, Krzysztof</au><au>Young, Matthew D</au><au>Miao, Zhichao</au><au>Meyer, Kerstin B</au><au>Teichmann, Sarah A</au><au>Park, Jong-Eun</au><au>Berger, Bonnie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BBKNN: fast batch alignment of single cell transcriptomes</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>36</volume><issue>3</issue><spage>964</spage><epage>965</epage><pages>964-965</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation Increasing numbers of large scale single cell RNA-Seq projects are leading to a data explosion, which can only be fully exploited through data integration. A number of methods have been developed to combine diverse datasets by removing technical batch effects, but most are computationally intensive. To overcome the challenge of enormous datasets, we have developed BBKNN, an extremely fast graph-based data integration algorithm. We illustrate the power of BBKNN on large scale mouse atlasing data, and favourably benchmark its run time against a number of competing methods. Availability and implementation BBKNN is available at https://github.com/Teichlab/bbknn, along with documentation and multiple example notebooks, and can be installed from pip. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31400197</pmid><doi>10.1093/bioinformatics/btz625</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2020-02, Vol.36 (3), p.964-965
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9883685
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Animals
Applications Note
Exome Sequencing
Mice
RNA-Seq
Transcriptome
title BBKNN: fast batch alignment of single cell transcriptomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BBKNN:%20fast%20batch%20alignment%20of%20single%20cell%20transcriptomes&rft.jtitle=Bioinformatics&rft.au=Pola%C5%84ski,%20Krzysztof&rft.date=2020-02-01&rft.volume=36&rft.issue=3&rft.spage=964&rft.epage=965&rft.pages=964-965&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btz625&rft_dat=%3Cproquest_pubme%3E2271831494%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2271831494&rft_id=info:pmid/31400197&rft_oup_id=10.1093/bioinformatics/btz625&rfr_iscdi=true