Fading of brain network fingerprint in Parkinson's disease predicts motor clinical impairment
The clinical connectome fingerprint (CCF) was recently introduced as a way to assess brain dynamics. It is an approach able to recognize individuals, based on the brain network. It showed its applicability providing network features used to predict the cognitive decline in preclinical Alzheimer'...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2023-02, Vol.44 (3), p.1239-1250 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1250 |
---|---|
container_issue | 3 |
container_start_page | 1239 |
container_title | Human brain mapping |
container_volume | 44 |
creator | Troisi Lopez, Emahnuel Minino, Roberta Liparoti, Marianna Polverino, Arianna Romano, Antonella De Micco, Rosa Lucidi, Fabio Tessitore, Alessandro Amico, Enrico Sorrentino, Giuseppe Jirsa, Viktor Sorrentino, Pierpaolo |
description | The clinical connectome fingerprint (CCF) was recently introduced as a way to assess brain dynamics. It is an approach able to recognize individuals, based on the brain network. It showed its applicability providing network features used to predict the cognitive decline in preclinical Alzheimer's disease. In this article, we explore the performance of CCF in 47 Parkinson's disease (PD) patients and 47 healthy controls, under the hypothesis that patients would show reduced identifiability as compared to controls, and that such reduction could be used to predict motor impairment. We used source‐reconstructed magnetoencephalography signals to build two functional connectomes for 47 patients with PD and 47 healthy controls. Then, exploiting the two connectomes per individual, we investigated the identifiability characteristics of each subject in each group. We observed reduced identifiability in patients compared to healthy individuals in the beta band. Furthermore, we found that the reduction in identifiability was proportional to the motor impairment, assessed through the Unified Parkinson's Disease Rating Scale, and, interestingly, able to predict it (at the subject level), through a cross‐validated regression model. Along with previous evidence, this article shows that CCF captures disrupted dynamics in neurodegenerative diseases and is particularly effective in predicting motor clinical impairment in PD.
Analysis of the brain network fingerprint in patients with Parkinson's disease, and correlation of brain identifiability features with the subject‐specific motor impairment. |
doi_str_mv | 10.1002/hbm.26156 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9875937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744326817</galeid><sourcerecordid>A744326817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5106-111e748be76e5c39d66740dce70c6886677ba6f0a4d26a807036fc4ad1e920ae3</originalsourceid><addsrcrecordid>eNp1ks9vFSEQx4nR2Fo9-A8YEg_qYV8ZYGH3YlIb-yOp0YMeDWHZ2VfaXXjCPpv-9_L6am2NhgPM8JnvzMAQ8hLYAhjj--fdtOAKavWI7AJrdcWgFY83Z1VXrdSwQ57lfMEYQM3gKdkRSoJgUuyS70e292FJ40C7ZH2gAeermC7pULyYVsmHmRb3F5sufcgxvMm09xltRrpK2Hs3ZzrFOSbqRh-8syP108r6NGGYn5Mngx0zvrjd98i3o49fD0-qs8_Hp4cHZ5WrS40VAKCWTYdaYe1E2yulJesdauZU0xRLd1YNzMqeK9swzYQanLQ9YMuZRbFH3m91V-tuwhIY5mRHU6qfbLo20Xrz8Cb4c7OMP03b6LoVugi8vRVI8cca82wmnx2Oow0Y19lwLVqmNK-hoK__Qi_iOoXSXqFUy0Fr3vyhlnZE48MQS163ETUHWkrBVQObtIt_UGX1OHkXAw6--B8EvNsGuBRzTjjc9QjMbGbBlFkwN7NQ2Ff3H-WO_P35BdjfAlcly_X_lczJh09byV8ldb0k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769217728</pqid></control><display><type>article</type><title>Fading of brain network fingerprint in Parkinson's disease predicts motor clinical impairment</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Troisi Lopez, Emahnuel ; Minino, Roberta ; Liparoti, Marianna ; Polverino, Arianna ; Romano, Antonella ; De Micco, Rosa ; Lucidi, Fabio ; Tessitore, Alessandro ; Amico, Enrico ; Sorrentino, Giuseppe ; Jirsa, Viktor ; Sorrentino, Pierpaolo</creator><creatorcontrib>Troisi Lopez, Emahnuel ; Minino, Roberta ; Liparoti, Marianna ; Polverino, Arianna ; Romano, Antonella ; De Micco, Rosa ; Lucidi, Fabio ; Tessitore, Alessandro ; Amico, Enrico ; Sorrentino, Giuseppe ; Jirsa, Viktor ; Sorrentino, Pierpaolo</creatorcontrib><description>The clinical connectome fingerprint (CCF) was recently introduced as a way to assess brain dynamics. It is an approach able to recognize individuals, based on the brain network. It showed its applicability providing network features used to predict the cognitive decline in preclinical Alzheimer's disease. In this article, we explore the performance of CCF in 47 Parkinson's disease (PD) patients and 47 healthy controls, under the hypothesis that patients would show reduced identifiability as compared to controls, and that such reduction could be used to predict motor impairment. We used source‐reconstructed magnetoencephalography signals to build two functional connectomes for 47 patients with PD and 47 healthy controls. Then, exploiting the two connectomes per individual, we investigated the identifiability characteristics of each subject in each group. We observed reduced identifiability in patients compared to healthy individuals in the beta band. Furthermore, we found that the reduction in identifiability was proportional to the motor impairment, assessed through the Unified Parkinson's Disease Rating Scale, and, interestingly, able to predict it (at the subject level), through a cross‐validated regression model. Along with previous evidence, this article shows that CCF captures disrupted dynamics in neurodegenerative diseases and is particularly effective in predicting motor clinical impairment in PD.
Analysis of the brain network fingerprint in patients with Parkinson's disease, and correlation of brain identifiability features with the subject‐specific motor impairment.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.26156</identifier><identifier>PMID: 36413043</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Alzheimer Disease ; Alzheimer's disease ; Brain ; Brain - diagnostic imaging ; brain fingerprint ; brain network ; clinical connectome fingerprint ; Cognitive ability ; Cognitive Dysfunction - diagnostic imaging ; Cognitive Dysfunction - etiology ; Fingerprints ; Humans ; Impairment ; Magnetic resonance imaging ; Magnetoencephalography ; Medical research ; Medicine, Experimental ; motor impairment ; Movement disorders ; neurodegenerative disease ; Neurodegenerative diseases ; Parkinson Disease - complications ; Parkinson Disease - diagnostic imaging ; Parkinson's disease ; Patients ; Reduction ; Regression models ; Time series</subject><ispartof>Human brain mapping, 2023-02, Vol.44 (3), p.1239-1250</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC.</rights><rights>2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.</rights><rights>COPYRIGHT 2023 John Wiley & Sons, Inc.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5106-111e748be76e5c39d66740dce70c6886677ba6f0a4d26a807036fc4ad1e920ae3</citedby><cites>FETCH-LOGICAL-c5106-111e748be76e5c39d66740dce70c6886677ba6f0a4d26a807036fc4ad1e920ae3</cites><orcidid>0000-0002-9556-9800 ; 0000-0002-6397-8888 ; 0000-0003-1740-8566 ; 0000-0003-2192-6841 ; 0000-0003-2203-9566 ; 0000-0002-8251-8860 ; 0000-0003-0800-2433 ; 0000-0002-6874-0879 ; 0000-0002-8416-0807 ; 0000-0003-3076-9665 ; 0000-0001-6705-9689 ; 0000-0002-0220-2672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9875937/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9875937/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36413043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Troisi Lopez, Emahnuel</creatorcontrib><creatorcontrib>Minino, Roberta</creatorcontrib><creatorcontrib>Liparoti, Marianna</creatorcontrib><creatorcontrib>Polverino, Arianna</creatorcontrib><creatorcontrib>Romano, Antonella</creatorcontrib><creatorcontrib>De Micco, Rosa</creatorcontrib><creatorcontrib>Lucidi, Fabio</creatorcontrib><creatorcontrib>Tessitore, Alessandro</creatorcontrib><creatorcontrib>Amico, Enrico</creatorcontrib><creatorcontrib>Sorrentino, Giuseppe</creatorcontrib><creatorcontrib>Jirsa, Viktor</creatorcontrib><creatorcontrib>Sorrentino, Pierpaolo</creatorcontrib><title>Fading of brain network fingerprint in Parkinson's disease predicts motor clinical impairment</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>The clinical connectome fingerprint (CCF) was recently introduced as a way to assess brain dynamics. It is an approach able to recognize individuals, based on the brain network. It showed its applicability providing network features used to predict the cognitive decline in preclinical Alzheimer's disease. In this article, we explore the performance of CCF in 47 Parkinson's disease (PD) patients and 47 healthy controls, under the hypothesis that patients would show reduced identifiability as compared to controls, and that such reduction could be used to predict motor impairment. We used source‐reconstructed magnetoencephalography signals to build two functional connectomes for 47 patients with PD and 47 healthy controls. Then, exploiting the two connectomes per individual, we investigated the identifiability characteristics of each subject in each group. We observed reduced identifiability in patients compared to healthy individuals in the beta band. Furthermore, we found that the reduction in identifiability was proportional to the motor impairment, assessed through the Unified Parkinson's Disease Rating Scale, and, interestingly, able to predict it (at the subject level), through a cross‐validated regression model. Along with previous evidence, this article shows that CCF captures disrupted dynamics in neurodegenerative diseases and is particularly effective in predicting motor clinical impairment in PD.
Analysis of the brain network fingerprint in patients with Parkinson's disease, and correlation of brain identifiability features with the subject‐specific motor impairment.</description><subject>Alzheimer Disease</subject><subject>Alzheimer's disease</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>brain fingerprint</subject><subject>brain network</subject><subject>clinical connectome fingerprint</subject><subject>Cognitive ability</subject><subject>Cognitive Dysfunction - diagnostic imaging</subject><subject>Cognitive Dysfunction - etiology</subject><subject>Fingerprints</subject><subject>Humans</subject><subject>Impairment</subject><subject>Magnetic resonance imaging</subject><subject>Magnetoencephalography</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>motor impairment</subject><subject>Movement disorders</subject><subject>neurodegenerative disease</subject><subject>Neurodegenerative diseases</subject><subject>Parkinson Disease - complications</subject><subject>Parkinson Disease - diagnostic imaging</subject><subject>Parkinson's disease</subject><subject>Patients</subject><subject>Reduction</subject><subject>Regression models</subject><subject>Time series</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1ks9vFSEQx4nR2Fo9-A8YEg_qYV8ZYGH3YlIb-yOp0YMeDWHZ2VfaXXjCPpv-9_L6am2NhgPM8JnvzMAQ8hLYAhjj--fdtOAKavWI7AJrdcWgFY83Z1VXrdSwQ57lfMEYQM3gKdkRSoJgUuyS70e292FJ40C7ZH2gAeermC7pULyYVsmHmRb3F5sufcgxvMm09xltRrpK2Hs3ZzrFOSbqRh-8syP108r6NGGYn5Mngx0zvrjd98i3o49fD0-qs8_Hp4cHZ5WrS40VAKCWTYdaYe1E2yulJesdauZU0xRLd1YNzMqeK9swzYQanLQ9YMuZRbFH3m91V-tuwhIY5mRHU6qfbLo20Xrz8Cb4c7OMP03b6LoVugi8vRVI8cca82wmnx2Oow0Y19lwLVqmNK-hoK__Qi_iOoXSXqFUy0Fr3vyhlnZE48MQS163ETUHWkrBVQObtIt_UGX1OHkXAw6--B8EvNsGuBRzTjjc9QjMbGbBlFkwN7NQ2Ff3H-WO_P35BdjfAlcly_X_lczJh09byV8ldb0k</recordid><startdate>20230215</startdate><enddate>20230215</enddate><creator>Troisi Lopez, Emahnuel</creator><creator>Minino, Roberta</creator><creator>Liparoti, Marianna</creator><creator>Polverino, Arianna</creator><creator>Romano, Antonella</creator><creator>De Micco, Rosa</creator><creator>Lucidi, Fabio</creator><creator>Tessitore, Alessandro</creator><creator>Amico, Enrico</creator><creator>Sorrentino, Giuseppe</creator><creator>Jirsa, Viktor</creator><creator>Sorrentino, Pierpaolo</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9556-9800</orcidid><orcidid>https://orcid.org/0000-0002-6397-8888</orcidid><orcidid>https://orcid.org/0000-0003-1740-8566</orcidid><orcidid>https://orcid.org/0000-0003-2192-6841</orcidid><orcidid>https://orcid.org/0000-0003-2203-9566</orcidid><orcidid>https://orcid.org/0000-0002-8251-8860</orcidid><orcidid>https://orcid.org/0000-0003-0800-2433</orcidid><orcidid>https://orcid.org/0000-0002-6874-0879</orcidid><orcidid>https://orcid.org/0000-0002-8416-0807</orcidid><orcidid>https://orcid.org/0000-0003-3076-9665</orcidid><orcidid>https://orcid.org/0000-0001-6705-9689</orcidid><orcidid>https://orcid.org/0000-0002-0220-2672</orcidid></search><sort><creationdate>20230215</creationdate><title>Fading of brain network fingerprint in Parkinson's disease predicts motor clinical impairment</title><author>Troisi Lopez, Emahnuel ; Minino, Roberta ; Liparoti, Marianna ; Polverino, Arianna ; Romano, Antonella ; De Micco, Rosa ; Lucidi, Fabio ; Tessitore, Alessandro ; Amico, Enrico ; Sorrentino, Giuseppe ; Jirsa, Viktor ; Sorrentino, Pierpaolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5106-111e748be76e5c39d66740dce70c6886677ba6f0a4d26a807036fc4ad1e920ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alzheimer Disease</topic><topic>Alzheimer's disease</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>brain fingerprint</topic><topic>brain network</topic><topic>clinical connectome fingerprint</topic><topic>Cognitive ability</topic><topic>Cognitive Dysfunction - diagnostic imaging</topic><topic>Cognitive Dysfunction - etiology</topic><topic>Fingerprints</topic><topic>Humans</topic><topic>Impairment</topic><topic>Magnetic resonance imaging</topic><topic>Magnetoencephalography</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>motor impairment</topic><topic>Movement disorders</topic><topic>neurodegenerative disease</topic><topic>Neurodegenerative diseases</topic><topic>Parkinson Disease - complications</topic><topic>Parkinson Disease - diagnostic imaging</topic><topic>Parkinson's disease</topic><topic>Patients</topic><topic>Reduction</topic><topic>Regression models</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Troisi Lopez, Emahnuel</creatorcontrib><creatorcontrib>Minino, Roberta</creatorcontrib><creatorcontrib>Liparoti, Marianna</creatorcontrib><creatorcontrib>Polverino, Arianna</creatorcontrib><creatorcontrib>Romano, Antonella</creatorcontrib><creatorcontrib>De Micco, Rosa</creatorcontrib><creatorcontrib>Lucidi, Fabio</creatorcontrib><creatorcontrib>Tessitore, Alessandro</creatorcontrib><creatorcontrib>Amico, Enrico</creatorcontrib><creatorcontrib>Sorrentino, Giuseppe</creatorcontrib><creatorcontrib>Jirsa, Viktor</creatorcontrib><creatorcontrib>Sorrentino, Pierpaolo</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Troisi Lopez, Emahnuel</au><au>Minino, Roberta</au><au>Liparoti, Marianna</au><au>Polverino, Arianna</au><au>Romano, Antonella</au><au>De Micco, Rosa</au><au>Lucidi, Fabio</au><au>Tessitore, Alessandro</au><au>Amico, Enrico</au><au>Sorrentino, Giuseppe</au><au>Jirsa, Viktor</au><au>Sorrentino, Pierpaolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fading of brain network fingerprint in Parkinson's disease predicts motor clinical impairment</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2023-02-15</date><risdate>2023</risdate><volume>44</volume><issue>3</issue><spage>1239</spage><epage>1250</epage><pages>1239-1250</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>The clinical connectome fingerprint (CCF) was recently introduced as a way to assess brain dynamics. It is an approach able to recognize individuals, based on the brain network. It showed its applicability providing network features used to predict the cognitive decline in preclinical Alzheimer's disease. In this article, we explore the performance of CCF in 47 Parkinson's disease (PD) patients and 47 healthy controls, under the hypothesis that patients would show reduced identifiability as compared to controls, and that such reduction could be used to predict motor impairment. We used source‐reconstructed magnetoencephalography signals to build two functional connectomes for 47 patients with PD and 47 healthy controls. Then, exploiting the two connectomes per individual, we investigated the identifiability characteristics of each subject in each group. We observed reduced identifiability in patients compared to healthy individuals in the beta band. Furthermore, we found that the reduction in identifiability was proportional to the motor impairment, assessed through the Unified Parkinson's Disease Rating Scale, and, interestingly, able to predict it (at the subject level), through a cross‐validated regression model. Along with previous evidence, this article shows that CCF captures disrupted dynamics in neurodegenerative diseases and is particularly effective in predicting motor clinical impairment in PD.
Analysis of the brain network fingerprint in patients with Parkinson's disease, and correlation of brain identifiability features with the subject‐specific motor impairment.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>36413043</pmid><doi>10.1002/hbm.26156</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9556-9800</orcidid><orcidid>https://orcid.org/0000-0002-6397-8888</orcidid><orcidid>https://orcid.org/0000-0003-1740-8566</orcidid><orcidid>https://orcid.org/0000-0003-2192-6841</orcidid><orcidid>https://orcid.org/0000-0003-2203-9566</orcidid><orcidid>https://orcid.org/0000-0002-8251-8860</orcidid><orcidid>https://orcid.org/0000-0003-0800-2433</orcidid><orcidid>https://orcid.org/0000-0002-6874-0879</orcidid><orcidid>https://orcid.org/0000-0002-8416-0807</orcidid><orcidid>https://orcid.org/0000-0003-3076-9665</orcidid><orcidid>https://orcid.org/0000-0001-6705-9689</orcidid><orcidid>https://orcid.org/0000-0002-0220-2672</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2023-02, Vol.44 (3), p.1239-1250 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9875937 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Alzheimer Disease Alzheimer's disease Brain Brain - diagnostic imaging brain fingerprint brain network clinical connectome fingerprint Cognitive ability Cognitive Dysfunction - diagnostic imaging Cognitive Dysfunction - etiology Fingerprints Humans Impairment Magnetic resonance imaging Magnetoencephalography Medical research Medicine, Experimental motor impairment Movement disorders neurodegenerative disease Neurodegenerative diseases Parkinson Disease - complications Parkinson Disease - diagnostic imaging Parkinson's disease Patients Reduction Regression models Time series |
title | Fading of brain network fingerprint in Parkinson's disease predicts motor clinical impairment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fading%20of%20brain%20network%20fingerprint%20in%20Parkinson's%20disease%20predicts%20motor%20clinical%20impairment&rft.jtitle=Human%20brain%20mapping&rft.au=Troisi%20Lopez,%20Emahnuel&rft.date=2023-02-15&rft.volume=44&rft.issue=3&rft.spage=1239&rft.epage=1250&rft.pages=1239-1250&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.26156&rft_dat=%3Cgale_pubme%3EA744326817%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769217728&rft_id=info:pmid/36413043&rft_galeid=A744326817&rfr_iscdi=true |