Fading of brain network fingerprint in Parkinson's disease predicts motor clinical impairment

The clinical connectome fingerprint (CCF) was recently introduced as a way to assess brain dynamics. It is an approach able to recognize individuals, based on the brain network. It showed its applicability providing network features used to predict the cognitive decline in preclinical Alzheimer'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2023-02, Vol.44 (3), p.1239-1250
Hauptverfasser: Troisi Lopez, Emahnuel, Minino, Roberta, Liparoti, Marianna, Polverino, Arianna, Romano, Antonella, De Micco, Rosa, Lucidi, Fabio, Tessitore, Alessandro, Amico, Enrico, Sorrentino, Giuseppe, Jirsa, Viktor, Sorrentino, Pierpaolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1250
container_issue 3
container_start_page 1239
container_title Human brain mapping
container_volume 44
creator Troisi Lopez, Emahnuel
Minino, Roberta
Liparoti, Marianna
Polverino, Arianna
Romano, Antonella
De Micco, Rosa
Lucidi, Fabio
Tessitore, Alessandro
Amico, Enrico
Sorrentino, Giuseppe
Jirsa, Viktor
Sorrentino, Pierpaolo
description The clinical connectome fingerprint (CCF) was recently introduced as a way to assess brain dynamics. It is an approach able to recognize individuals, based on the brain network. It showed its applicability providing network features used to predict the cognitive decline in preclinical Alzheimer's disease. In this article, we explore the performance of CCF in 47 Parkinson's disease (PD) patients and 47 healthy controls, under the hypothesis that patients would show reduced identifiability as compared to controls, and that such reduction could be used to predict motor impairment. We used source‐reconstructed magnetoencephalography signals to build two functional connectomes for 47 patients with PD and 47 healthy controls. Then, exploiting the two connectomes per individual, we investigated the identifiability characteristics of each subject in each group. We observed reduced identifiability in patients compared to healthy individuals in the beta band. Furthermore, we found that the reduction in identifiability was proportional to the motor impairment, assessed through the Unified Parkinson's Disease Rating Scale, and, interestingly, able to predict it (at the subject level), through a cross‐validated regression model. Along with previous evidence, this article shows that CCF captures disrupted dynamics in neurodegenerative diseases and is particularly effective in predicting motor clinical impairment in PD. Analysis of the brain network fingerprint in patients with Parkinson's disease, and correlation of brain identifiability features with the subject‐specific motor impairment.
doi_str_mv 10.1002/hbm.26156
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9875937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744326817</galeid><sourcerecordid>A744326817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5106-111e748be76e5c39d66740dce70c6886677ba6f0a4d26a807036fc4ad1e920ae3</originalsourceid><addsrcrecordid>eNp1ks9vFSEQx4nR2Fo9-A8YEg_qYV8ZYGH3YlIb-yOp0YMeDWHZ2VfaXXjCPpv-9_L6am2NhgPM8JnvzMAQ8hLYAhjj--fdtOAKavWI7AJrdcWgFY83Z1VXrdSwQ57lfMEYQM3gKdkRSoJgUuyS70e292FJ40C7ZH2gAeermC7pULyYVsmHmRb3F5sufcgxvMm09xltRrpK2Hs3ZzrFOSbqRh-8syP108r6NGGYn5Mngx0zvrjd98i3o49fD0-qs8_Hp4cHZ5WrS40VAKCWTYdaYe1E2yulJesdauZU0xRLd1YNzMqeK9swzYQanLQ9YMuZRbFH3m91V-tuwhIY5mRHU6qfbLo20Xrz8Cb4c7OMP03b6LoVugi8vRVI8cca82wmnx2Oow0Y19lwLVqmNK-hoK__Qi_iOoXSXqFUy0Fr3vyhlnZE48MQS163ETUHWkrBVQObtIt_UGX1OHkXAw6--B8EvNsGuBRzTjjc9QjMbGbBlFkwN7NQ2Ff3H-WO_P35BdjfAlcly_X_lczJh09byV8ldb0k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769217728</pqid></control><display><type>article</type><title>Fading of brain network fingerprint in Parkinson's disease predicts motor clinical impairment</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Troisi Lopez, Emahnuel ; Minino, Roberta ; Liparoti, Marianna ; Polverino, Arianna ; Romano, Antonella ; De Micco, Rosa ; Lucidi, Fabio ; Tessitore, Alessandro ; Amico, Enrico ; Sorrentino, Giuseppe ; Jirsa, Viktor ; Sorrentino, Pierpaolo</creator><creatorcontrib>Troisi Lopez, Emahnuel ; Minino, Roberta ; Liparoti, Marianna ; Polverino, Arianna ; Romano, Antonella ; De Micco, Rosa ; Lucidi, Fabio ; Tessitore, Alessandro ; Amico, Enrico ; Sorrentino, Giuseppe ; Jirsa, Viktor ; Sorrentino, Pierpaolo</creatorcontrib><description>The clinical connectome fingerprint (CCF) was recently introduced as a way to assess brain dynamics. It is an approach able to recognize individuals, based on the brain network. It showed its applicability providing network features used to predict the cognitive decline in preclinical Alzheimer's disease. In this article, we explore the performance of CCF in 47 Parkinson's disease (PD) patients and 47 healthy controls, under the hypothesis that patients would show reduced identifiability as compared to controls, and that such reduction could be used to predict motor impairment. We used source‐reconstructed magnetoencephalography signals to build two functional connectomes for 47 patients with PD and 47 healthy controls. Then, exploiting the two connectomes per individual, we investigated the identifiability characteristics of each subject in each group. We observed reduced identifiability in patients compared to healthy individuals in the beta band. Furthermore, we found that the reduction in identifiability was proportional to the motor impairment, assessed through the Unified Parkinson's Disease Rating Scale, and, interestingly, able to predict it (at the subject level), through a cross‐validated regression model. Along with previous evidence, this article shows that CCF captures disrupted dynamics in neurodegenerative diseases and is particularly effective in predicting motor clinical impairment in PD. Analysis of the brain network fingerprint in patients with Parkinson's disease, and correlation of brain identifiability features with the subject‐specific motor impairment.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.26156</identifier><identifier>PMID: 36413043</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Alzheimer Disease ; Alzheimer's disease ; Brain ; Brain - diagnostic imaging ; brain fingerprint ; brain network ; clinical connectome fingerprint ; Cognitive ability ; Cognitive Dysfunction - diagnostic imaging ; Cognitive Dysfunction - etiology ; Fingerprints ; Humans ; Impairment ; Magnetic resonance imaging ; Magnetoencephalography ; Medical research ; Medicine, Experimental ; motor impairment ; Movement disorders ; neurodegenerative disease ; Neurodegenerative diseases ; Parkinson Disease - complications ; Parkinson Disease - diagnostic imaging ; Parkinson's disease ; Patients ; Reduction ; Regression models ; Time series</subject><ispartof>Human brain mapping, 2023-02, Vol.44 (3), p.1239-1250</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC.</rights><rights>2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.</rights><rights>COPYRIGHT 2023 John Wiley &amp; Sons, Inc.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5106-111e748be76e5c39d66740dce70c6886677ba6f0a4d26a807036fc4ad1e920ae3</citedby><cites>FETCH-LOGICAL-c5106-111e748be76e5c39d66740dce70c6886677ba6f0a4d26a807036fc4ad1e920ae3</cites><orcidid>0000-0002-9556-9800 ; 0000-0002-6397-8888 ; 0000-0003-1740-8566 ; 0000-0003-2192-6841 ; 0000-0003-2203-9566 ; 0000-0002-8251-8860 ; 0000-0003-0800-2433 ; 0000-0002-6874-0879 ; 0000-0002-8416-0807 ; 0000-0003-3076-9665 ; 0000-0001-6705-9689 ; 0000-0002-0220-2672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9875937/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9875937/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36413043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Troisi Lopez, Emahnuel</creatorcontrib><creatorcontrib>Minino, Roberta</creatorcontrib><creatorcontrib>Liparoti, Marianna</creatorcontrib><creatorcontrib>Polverino, Arianna</creatorcontrib><creatorcontrib>Romano, Antonella</creatorcontrib><creatorcontrib>De Micco, Rosa</creatorcontrib><creatorcontrib>Lucidi, Fabio</creatorcontrib><creatorcontrib>Tessitore, Alessandro</creatorcontrib><creatorcontrib>Amico, Enrico</creatorcontrib><creatorcontrib>Sorrentino, Giuseppe</creatorcontrib><creatorcontrib>Jirsa, Viktor</creatorcontrib><creatorcontrib>Sorrentino, Pierpaolo</creatorcontrib><title>Fading of brain network fingerprint in Parkinson's disease predicts motor clinical impairment</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>The clinical connectome fingerprint (CCF) was recently introduced as a way to assess brain dynamics. It is an approach able to recognize individuals, based on the brain network. It showed its applicability providing network features used to predict the cognitive decline in preclinical Alzheimer's disease. In this article, we explore the performance of CCF in 47 Parkinson's disease (PD) patients and 47 healthy controls, under the hypothesis that patients would show reduced identifiability as compared to controls, and that such reduction could be used to predict motor impairment. We used source‐reconstructed magnetoencephalography signals to build two functional connectomes for 47 patients with PD and 47 healthy controls. Then, exploiting the two connectomes per individual, we investigated the identifiability characteristics of each subject in each group. We observed reduced identifiability in patients compared to healthy individuals in the beta band. Furthermore, we found that the reduction in identifiability was proportional to the motor impairment, assessed through the Unified Parkinson's Disease Rating Scale, and, interestingly, able to predict it (at the subject level), through a cross‐validated regression model. Along with previous evidence, this article shows that CCF captures disrupted dynamics in neurodegenerative diseases and is particularly effective in predicting motor clinical impairment in PD. Analysis of the brain network fingerprint in patients with Parkinson's disease, and correlation of brain identifiability features with the subject‐specific motor impairment.</description><subject>Alzheimer Disease</subject><subject>Alzheimer's disease</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>brain fingerprint</subject><subject>brain network</subject><subject>clinical connectome fingerprint</subject><subject>Cognitive ability</subject><subject>Cognitive Dysfunction - diagnostic imaging</subject><subject>Cognitive Dysfunction - etiology</subject><subject>Fingerprints</subject><subject>Humans</subject><subject>Impairment</subject><subject>Magnetic resonance imaging</subject><subject>Magnetoencephalography</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>motor impairment</subject><subject>Movement disorders</subject><subject>neurodegenerative disease</subject><subject>Neurodegenerative diseases</subject><subject>Parkinson Disease - complications</subject><subject>Parkinson Disease - diagnostic imaging</subject><subject>Parkinson's disease</subject><subject>Patients</subject><subject>Reduction</subject><subject>Regression models</subject><subject>Time series</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1ks9vFSEQx4nR2Fo9-A8YEg_qYV8ZYGH3YlIb-yOp0YMeDWHZ2VfaXXjCPpv-9_L6am2NhgPM8JnvzMAQ8hLYAhjj--fdtOAKavWI7AJrdcWgFY83Z1VXrdSwQ57lfMEYQM3gKdkRSoJgUuyS70e292FJ40C7ZH2gAeermC7pULyYVsmHmRb3F5sufcgxvMm09xltRrpK2Hs3ZzrFOSbqRh-8syP108r6NGGYn5Mngx0zvrjd98i3o49fD0-qs8_Hp4cHZ5WrS40VAKCWTYdaYe1E2yulJesdauZU0xRLd1YNzMqeK9swzYQanLQ9YMuZRbFH3m91V-tuwhIY5mRHU6qfbLo20Xrz8Cb4c7OMP03b6LoVugi8vRVI8cca82wmnx2Oow0Y19lwLVqmNK-hoK__Qi_iOoXSXqFUy0Fr3vyhlnZE48MQS163ETUHWkrBVQObtIt_UGX1OHkXAw6--B8EvNsGuBRzTjjc9QjMbGbBlFkwN7NQ2Ff3H-WO_P35BdjfAlcly_X_lczJh09byV8ldb0k</recordid><startdate>20230215</startdate><enddate>20230215</enddate><creator>Troisi Lopez, Emahnuel</creator><creator>Minino, Roberta</creator><creator>Liparoti, Marianna</creator><creator>Polverino, Arianna</creator><creator>Romano, Antonella</creator><creator>De Micco, Rosa</creator><creator>Lucidi, Fabio</creator><creator>Tessitore, Alessandro</creator><creator>Amico, Enrico</creator><creator>Sorrentino, Giuseppe</creator><creator>Jirsa, Viktor</creator><creator>Sorrentino, Pierpaolo</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9556-9800</orcidid><orcidid>https://orcid.org/0000-0002-6397-8888</orcidid><orcidid>https://orcid.org/0000-0003-1740-8566</orcidid><orcidid>https://orcid.org/0000-0003-2192-6841</orcidid><orcidid>https://orcid.org/0000-0003-2203-9566</orcidid><orcidid>https://orcid.org/0000-0002-8251-8860</orcidid><orcidid>https://orcid.org/0000-0003-0800-2433</orcidid><orcidid>https://orcid.org/0000-0002-6874-0879</orcidid><orcidid>https://orcid.org/0000-0002-8416-0807</orcidid><orcidid>https://orcid.org/0000-0003-3076-9665</orcidid><orcidid>https://orcid.org/0000-0001-6705-9689</orcidid><orcidid>https://orcid.org/0000-0002-0220-2672</orcidid></search><sort><creationdate>20230215</creationdate><title>Fading of brain network fingerprint in Parkinson's disease predicts motor clinical impairment</title><author>Troisi Lopez, Emahnuel ; Minino, Roberta ; Liparoti, Marianna ; Polverino, Arianna ; Romano, Antonella ; De Micco, Rosa ; Lucidi, Fabio ; Tessitore, Alessandro ; Amico, Enrico ; Sorrentino, Giuseppe ; Jirsa, Viktor ; Sorrentino, Pierpaolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5106-111e748be76e5c39d66740dce70c6886677ba6f0a4d26a807036fc4ad1e920ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alzheimer Disease</topic><topic>Alzheimer's disease</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>brain fingerprint</topic><topic>brain network</topic><topic>clinical connectome fingerprint</topic><topic>Cognitive ability</topic><topic>Cognitive Dysfunction - diagnostic imaging</topic><topic>Cognitive Dysfunction - etiology</topic><topic>Fingerprints</topic><topic>Humans</topic><topic>Impairment</topic><topic>Magnetic resonance imaging</topic><topic>Magnetoencephalography</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>motor impairment</topic><topic>Movement disorders</topic><topic>neurodegenerative disease</topic><topic>Neurodegenerative diseases</topic><topic>Parkinson Disease - complications</topic><topic>Parkinson Disease - diagnostic imaging</topic><topic>Parkinson's disease</topic><topic>Patients</topic><topic>Reduction</topic><topic>Regression models</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Troisi Lopez, Emahnuel</creatorcontrib><creatorcontrib>Minino, Roberta</creatorcontrib><creatorcontrib>Liparoti, Marianna</creatorcontrib><creatorcontrib>Polverino, Arianna</creatorcontrib><creatorcontrib>Romano, Antonella</creatorcontrib><creatorcontrib>De Micco, Rosa</creatorcontrib><creatorcontrib>Lucidi, Fabio</creatorcontrib><creatorcontrib>Tessitore, Alessandro</creatorcontrib><creatorcontrib>Amico, Enrico</creatorcontrib><creatorcontrib>Sorrentino, Giuseppe</creatorcontrib><creatorcontrib>Jirsa, Viktor</creatorcontrib><creatorcontrib>Sorrentino, Pierpaolo</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Troisi Lopez, Emahnuel</au><au>Minino, Roberta</au><au>Liparoti, Marianna</au><au>Polverino, Arianna</au><au>Romano, Antonella</au><au>De Micco, Rosa</au><au>Lucidi, Fabio</au><au>Tessitore, Alessandro</au><au>Amico, Enrico</au><au>Sorrentino, Giuseppe</au><au>Jirsa, Viktor</au><au>Sorrentino, Pierpaolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fading of brain network fingerprint in Parkinson's disease predicts motor clinical impairment</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2023-02-15</date><risdate>2023</risdate><volume>44</volume><issue>3</issue><spage>1239</spage><epage>1250</epage><pages>1239-1250</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>The clinical connectome fingerprint (CCF) was recently introduced as a way to assess brain dynamics. It is an approach able to recognize individuals, based on the brain network. It showed its applicability providing network features used to predict the cognitive decline in preclinical Alzheimer's disease. In this article, we explore the performance of CCF in 47 Parkinson's disease (PD) patients and 47 healthy controls, under the hypothesis that patients would show reduced identifiability as compared to controls, and that such reduction could be used to predict motor impairment. We used source‐reconstructed magnetoencephalography signals to build two functional connectomes for 47 patients with PD and 47 healthy controls. Then, exploiting the two connectomes per individual, we investigated the identifiability characteristics of each subject in each group. We observed reduced identifiability in patients compared to healthy individuals in the beta band. Furthermore, we found that the reduction in identifiability was proportional to the motor impairment, assessed through the Unified Parkinson's Disease Rating Scale, and, interestingly, able to predict it (at the subject level), through a cross‐validated regression model. Along with previous evidence, this article shows that CCF captures disrupted dynamics in neurodegenerative diseases and is particularly effective in predicting motor clinical impairment in PD. Analysis of the brain network fingerprint in patients with Parkinson's disease, and correlation of brain identifiability features with the subject‐specific motor impairment.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36413043</pmid><doi>10.1002/hbm.26156</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9556-9800</orcidid><orcidid>https://orcid.org/0000-0002-6397-8888</orcidid><orcidid>https://orcid.org/0000-0003-1740-8566</orcidid><orcidid>https://orcid.org/0000-0003-2192-6841</orcidid><orcidid>https://orcid.org/0000-0003-2203-9566</orcidid><orcidid>https://orcid.org/0000-0002-8251-8860</orcidid><orcidid>https://orcid.org/0000-0003-0800-2433</orcidid><orcidid>https://orcid.org/0000-0002-6874-0879</orcidid><orcidid>https://orcid.org/0000-0002-8416-0807</orcidid><orcidid>https://orcid.org/0000-0003-3076-9665</orcidid><orcidid>https://orcid.org/0000-0001-6705-9689</orcidid><orcidid>https://orcid.org/0000-0002-0220-2672</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2023-02, Vol.44 (3), p.1239-1250
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9875937
source MEDLINE; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Alzheimer Disease
Alzheimer's disease
Brain
Brain - diagnostic imaging
brain fingerprint
brain network
clinical connectome fingerprint
Cognitive ability
Cognitive Dysfunction - diagnostic imaging
Cognitive Dysfunction - etiology
Fingerprints
Humans
Impairment
Magnetic resonance imaging
Magnetoencephalography
Medical research
Medicine, Experimental
motor impairment
Movement disorders
neurodegenerative disease
Neurodegenerative diseases
Parkinson Disease - complications
Parkinson Disease - diagnostic imaging
Parkinson's disease
Patients
Reduction
Regression models
Time series
title Fading of brain network fingerprint in Parkinson's disease predicts motor clinical impairment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fading%20of%20brain%20network%20fingerprint%20in%20Parkinson's%20disease%20predicts%20motor%20clinical%20impairment&rft.jtitle=Human%20brain%20mapping&rft.au=Troisi%20Lopez,%20Emahnuel&rft.date=2023-02-15&rft.volume=44&rft.issue=3&rft.spage=1239&rft.epage=1250&rft.pages=1239-1250&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.26156&rft_dat=%3Cgale_pubme%3EA744326817%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2769217728&rft_id=info:pmid/36413043&rft_galeid=A744326817&rfr_iscdi=true