Collaborative Assessment of Molecular Geometries and Energies from the Open Force Field
Force fields form the basis for classical molecular simulations, and their accuracy is crucial for the quality of, for instance, protein–ligand binding simulations in drug discovery. The huge diversity of small-molecule chemistry makes it a challenge to build and parameterize a suitable force field....
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2022-12, Vol.62 (23), p.6094-6104 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6104 |
---|---|
container_issue | 23 |
container_start_page | 6094 |
container_title | Journal of chemical information and modeling |
container_volume | 62 |
creator | D’Amore, Lorenzo Hahn, David F. Dotson, David L. Horton, Joshua T. Anwar, Jamshed Craig, Ian Fox, Thomas Gobbi, Alberto Lakkaraju, Sirish Kaushik Lucas, Xavier Meier, Katharina Mobley, David L. Narayanan, Arjun Schindler, Christina E. M. Swope, William C. in ’t Veld, Pieter J. Wagner, Jeffrey Xue, Bai Tresadern, Gary |
description | Force fields form the basis for classical molecular simulations, and their accuracy is crucial for the quality of, for instance, protein–ligand binding simulations in drug discovery. The huge diversity of small-molecule chemistry makes it a challenge to build and parameterize a suitable force field. The Open Force Field Initiative is a combined industry and academic consortium developing a state-of-the-art small-molecule force field. In this report, industry members of the consortium worked together to objectively evaluate the performance of the force fields (referred to here as OpenFF) produced by the initiative on a combined public and proprietary dataset of 19,653 relevant molecules selected from their internal research and compound collections. This evaluation was important because it was completely blind; at most partners, none of the molecules or data were used in force field development or testing prior to this work. We compare the Open Force Field “Sage” version 2.0.0 and “Parsley” version 1.3.0 with GAFF-2.11-AM1BCC, OPLS4, and SMIRNOFF99Frosst. We analyzed force-field-optimized geometries and conformer energies compared to reference quantum mechanical data. We show that OPLS4 performs best, and the latest Open Force Field release shows a clear improvement compared to its predecessors. The performance of established force fields such as GAFF-2.11 was generally worse. While OpenFF researchers were involved in building the benchmarking infrastructure used in this work, benchmarking was done entirely in-house within industrial organizations and the resulting assessment is reported here. This work assesses the force field performance using separate benchmarking steps, external datasets, and involving external research groups. This effort may also be unique in terms of the number of different industrial partners involved, with 10 different companies participating in the benchmark efforts. |
doi_str_mv | 10.1021/acs.jcim.2c01185 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9873353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754550378</sourcerecordid><originalsourceid>FETCH-LOGICAL-a461t-d314cff313a9df50240038cfcfd63422e8c994b26948c5b786df8fab07b8c0273</originalsourceid><addsrcrecordid>eNp1kUtLJDEUhcOgjM_9rIaAGxd2m2dVshGksVVQ3Mygu5BK3Wg1VZWepEqYfz9pu1tGwVUS8p2Tc3MQ-kHJlBJGz61L04VruilzhFIlv6F9KoWe6II87Wz3Uhd76CClBSGc64J9R3u8EJwrLvfR4yy0ra1CtEPzCvgyJUipg37AweP70IIbWxvxNYQOhthAwrav8VUP8Xl18DF0eHgB_LCEHs9DdIDnDbT1Edr1tk1wvFkP0e_51a_ZzeTu4fp2dnk3saKgw6TmVDjvOeVW114SJnJI5bzzdcEFY6Cc1qJihRbKyapURe2VtxUpK-UIK_khulj7Lseqg9rl5NG2Zhmbzsa_JtjGfLzpmxfzHF6NViXnkmeD041BDH9GSIPpmuQgf0oPYUyGlYJIUmpGMnryCV2EMfZ5vExJISXhpcoUWVMuhpQi-PcwlJhVaya3ZlatmU1rWfLz_yHeBduaMnC2Bt6k20e_9PsHKR2kQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754550378</pqid></control><display><type>article</type><title>Collaborative Assessment of Molecular Geometries and Energies from the Open Force Field</title><source>ACS Publications</source><source>MEDLINE</source><creator>D’Amore, Lorenzo ; Hahn, David F. ; Dotson, David L. ; Horton, Joshua T. ; Anwar, Jamshed ; Craig, Ian ; Fox, Thomas ; Gobbi, Alberto ; Lakkaraju, Sirish Kaushik ; Lucas, Xavier ; Meier, Katharina ; Mobley, David L. ; Narayanan, Arjun ; Schindler, Christina E. M. ; Swope, William C. ; in ’t Veld, Pieter J. ; Wagner, Jeffrey ; Xue, Bai ; Tresadern, Gary</creator><creatorcontrib>D’Amore, Lorenzo ; Hahn, David F. ; Dotson, David L. ; Horton, Joshua T. ; Anwar, Jamshed ; Craig, Ian ; Fox, Thomas ; Gobbi, Alberto ; Lakkaraju, Sirish Kaushik ; Lucas, Xavier ; Meier, Katharina ; Mobley, David L. ; Narayanan, Arjun ; Schindler, Christina E. M. ; Swope, William C. ; in ’t Veld, Pieter J. ; Wagner, Jeffrey ; Xue, Bai ; Tresadern, Gary</creatorcontrib><description>Force fields form the basis for classical molecular simulations, and their accuracy is crucial for the quality of, for instance, protein–ligand binding simulations in drug discovery. The huge diversity of small-molecule chemistry makes it a challenge to build and parameterize a suitable force field. The Open Force Field Initiative is a combined industry and academic consortium developing a state-of-the-art small-molecule force field. In this report, industry members of the consortium worked together to objectively evaluate the performance of the force fields (referred to here as OpenFF) produced by the initiative on a combined public and proprietary dataset of 19,653 relevant molecules selected from their internal research and compound collections. This evaluation was important because it was completely blind; at most partners, none of the molecules or data were used in force field development or testing prior to this work. We compare the Open Force Field “Sage” version 2.0.0 and “Parsley” version 1.3.0 with GAFF-2.11-AM1BCC, OPLS4, and SMIRNOFF99Frosst. We analyzed force-field-optimized geometries and conformer energies compared to reference quantum mechanical data. We show that OPLS4 performs best, and the latest Open Force Field release shows a clear improvement compared to its predecessors. The performance of established force fields such as GAFF-2.11 was generally worse. While OpenFF researchers were involved in building the benchmarking infrastructure used in this work, benchmarking was done entirely in-house within industrial organizations and the resulting assessment is reported here. This work assesses the force field performance using separate benchmarking steps, external datasets, and involving external research groups. This effort may also be unique in terms of the number of different industrial partners involved, with 10 different companies participating in the benchmark efforts.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.2c01185</identifier><identifier>PMID: 36433835</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Benchmarks ; Computational Chemistry ; Consortia ; Datasets ; Industrial development ; Ligands ; Performance evaluation ; Physical Phenomena ; Proteins - chemistry ; Quantum mechanics ; Thermodynamics</subject><ispartof>Journal of chemical information and modeling, 2022-12, Vol.62 (23), p.6094-6104</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 12, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a461t-d314cff313a9df50240038cfcfd63422e8c994b26948c5b786df8fab07b8c0273</citedby><cites>FETCH-LOGICAL-a461t-d314cff313a9df50240038cfcfd63422e8c994b26948c5b786df8fab07b8c0273</cites><orcidid>0000-0002-8980-048X ; 0000-0002-8546-8096 ; 0000-0003-0887-3976 ; 0000-0002-5299-4145 ; 0000-0001-8460-5688 ; 0000-0003-2245-1956 ; 0000-0002-4801-1644 ; 0000-0003-1721-0330 ; 0000-0003-1553-5780 ; 0000-0002-1054-4701 ; 0000-0003-0434-9237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.2c01185$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.2c01185$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36433835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>D’Amore, Lorenzo</creatorcontrib><creatorcontrib>Hahn, David F.</creatorcontrib><creatorcontrib>Dotson, David L.</creatorcontrib><creatorcontrib>Horton, Joshua T.</creatorcontrib><creatorcontrib>Anwar, Jamshed</creatorcontrib><creatorcontrib>Craig, Ian</creatorcontrib><creatorcontrib>Fox, Thomas</creatorcontrib><creatorcontrib>Gobbi, Alberto</creatorcontrib><creatorcontrib>Lakkaraju, Sirish Kaushik</creatorcontrib><creatorcontrib>Lucas, Xavier</creatorcontrib><creatorcontrib>Meier, Katharina</creatorcontrib><creatorcontrib>Mobley, David L.</creatorcontrib><creatorcontrib>Narayanan, Arjun</creatorcontrib><creatorcontrib>Schindler, Christina E. M.</creatorcontrib><creatorcontrib>Swope, William C.</creatorcontrib><creatorcontrib>in ’t Veld, Pieter J.</creatorcontrib><creatorcontrib>Wagner, Jeffrey</creatorcontrib><creatorcontrib>Xue, Bai</creatorcontrib><creatorcontrib>Tresadern, Gary</creatorcontrib><title>Collaborative Assessment of Molecular Geometries and Energies from the Open Force Field</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Force fields form the basis for classical molecular simulations, and their accuracy is crucial for the quality of, for instance, protein–ligand binding simulations in drug discovery. The huge diversity of small-molecule chemistry makes it a challenge to build and parameterize a suitable force field. The Open Force Field Initiative is a combined industry and academic consortium developing a state-of-the-art small-molecule force field. In this report, industry members of the consortium worked together to objectively evaluate the performance of the force fields (referred to here as OpenFF) produced by the initiative on a combined public and proprietary dataset of 19,653 relevant molecules selected from their internal research and compound collections. This evaluation was important because it was completely blind; at most partners, none of the molecules or data were used in force field development or testing prior to this work. We compare the Open Force Field “Sage” version 2.0.0 and “Parsley” version 1.3.0 with GAFF-2.11-AM1BCC, OPLS4, and SMIRNOFF99Frosst. We analyzed force-field-optimized geometries and conformer energies compared to reference quantum mechanical data. We show that OPLS4 performs best, and the latest Open Force Field release shows a clear improvement compared to its predecessors. The performance of established force fields such as GAFF-2.11 was generally worse. While OpenFF researchers were involved in building the benchmarking infrastructure used in this work, benchmarking was done entirely in-house within industrial organizations and the resulting assessment is reported here. This work assesses the force field performance using separate benchmarking steps, external datasets, and involving external research groups. This effort may also be unique in terms of the number of different industrial partners involved, with 10 different companies participating in the benchmark efforts.</description><subject>Benchmarks</subject><subject>Computational Chemistry</subject><subject>Consortia</subject><subject>Datasets</subject><subject>Industrial development</subject><subject>Ligands</subject><subject>Performance evaluation</subject><subject>Physical Phenomena</subject><subject>Proteins - chemistry</subject><subject>Quantum mechanics</subject><subject>Thermodynamics</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtLJDEUhcOgjM_9rIaAGxd2m2dVshGksVVQ3Mygu5BK3Wg1VZWepEqYfz9pu1tGwVUS8p2Tc3MQ-kHJlBJGz61L04VruilzhFIlv6F9KoWe6II87Wz3Uhd76CClBSGc64J9R3u8EJwrLvfR4yy0ra1CtEPzCvgyJUipg37AweP70IIbWxvxNYQOhthAwrav8VUP8Xl18DF0eHgB_LCEHs9DdIDnDbT1Edr1tk1wvFkP0e_51a_ZzeTu4fp2dnk3saKgw6TmVDjvOeVW114SJnJI5bzzdcEFY6Cc1qJihRbKyapURe2VtxUpK-UIK_khulj7Lseqg9rl5NG2Zhmbzsa_JtjGfLzpmxfzHF6NViXnkmeD041BDH9GSIPpmuQgf0oPYUyGlYJIUmpGMnryCV2EMfZ5vExJISXhpcoUWVMuhpQi-PcwlJhVaya3ZlatmU1rWfLz_yHeBduaMnC2Bt6k20e_9PsHKR2kQw</recordid><startdate>20221212</startdate><enddate>20221212</enddate><creator>D’Amore, Lorenzo</creator><creator>Hahn, David F.</creator><creator>Dotson, David L.</creator><creator>Horton, Joshua T.</creator><creator>Anwar, Jamshed</creator><creator>Craig, Ian</creator><creator>Fox, Thomas</creator><creator>Gobbi, Alberto</creator><creator>Lakkaraju, Sirish Kaushik</creator><creator>Lucas, Xavier</creator><creator>Meier, Katharina</creator><creator>Mobley, David L.</creator><creator>Narayanan, Arjun</creator><creator>Schindler, Christina E. M.</creator><creator>Swope, William C.</creator><creator>in ’t Veld, Pieter J.</creator><creator>Wagner, Jeffrey</creator><creator>Xue, Bai</creator><creator>Tresadern, Gary</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8980-048X</orcidid><orcidid>https://orcid.org/0000-0002-8546-8096</orcidid><orcidid>https://orcid.org/0000-0003-0887-3976</orcidid><orcidid>https://orcid.org/0000-0002-5299-4145</orcidid><orcidid>https://orcid.org/0000-0001-8460-5688</orcidid><orcidid>https://orcid.org/0000-0003-2245-1956</orcidid><orcidid>https://orcid.org/0000-0002-4801-1644</orcidid><orcidid>https://orcid.org/0000-0003-1721-0330</orcidid><orcidid>https://orcid.org/0000-0003-1553-5780</orcidid><orcidid>https://orcid.org/0000-0002-1054-4701</orcidid><orcidid>https://orcid.org/0000-0003-0434-9237</orcidid></search><sort><creationdate>20221212</creationdate><title>Collaborative Assessment of Molecular Geometries and Energies from the Open Force Field</title><author>D’Amore, Lorenzo ; Hahn, David F. ; Dotson, David L. ; Horton, Joshua T. ; Anwar, Jamshed ; Craig, Ian ; Fox, Thomas ; Gobbi, Alberto ; Lakkaraju, Sirish Kaushik ; Lucas, Xavier ; Meier, Katharina ; Mobley, David L. ; Narayanan, Arjun ; Schindler, Christina E. M. ; Swope, William C. ; in ’t Veld, Pieter J. ; Wagner, Jeffrey ; Xue, Bai ; Tresadern, Gary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a461t-d314cff313a9df50240038cfcfd63422e8c994b26948c5b786df8fab07b8c0273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Benchmarks</topic><topic>Computational Chemistry</topic><topic>Consortia</topic><topic>Datasets</topic><topic>Industrial development</topic><topic>Ligands</topic><topic>Performance evaluation</topic><topic>Physical Phenomena</topic><topic>Proteins - chemistry</topic><topic>Quantum mechanics</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’Amore, Lorenzo</creatorcontrib><creatorcontrib>Hahn, David F.</creatorcontrib><creatorcontrib>Dotson, David L.</creatorcontrib><creatorcontrib>Horton, Joshua T.</creatorcontrib><creatorcontrib>Anwar, Jamshed</creatorcontrib><creatorcontrib>Craig, Ian</creatorcontrib><creatorcontrib>Fox, Thomas</creatorcontrib><creatorcontrib>Gobbi, Alberto</creatorcontrib><creatorcontrib>Lakkaraju, Sirish Kaushik</creatorcontrib><creatorcontrib>Lucas, Xavier</creatorcontrib><creatorcontrib>Meier, Katharina</creatorcontrib><creatorcontrib>Mobley, David L.</creatorcontrib><creatorcontrib>Narayanan, Arjun</creatorcontrib><creatorcontrib>Schindler, Christina E. M.</creatorcontrib><creatorcontrib>Swope, William C.</creatorcontrib><creatorcontrib>in ’t Veld, Pieter J.</creatorcontrib><creatorcontrib>Wagner, Jeffrey</creatorcontrib><creatorcontrib>Xue, Bai</creatorcontrib><creatorcontrib>Tresadern, Gary</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Amore, Lorenzo</au><au>Hahn, David F.</au><au>Dotson, David L.</au><au>Horton, Joshua T.</au><au>Anwar, Jamshed</au><au>Craig, Ian</au><au>Fox, Thomas</au><au>Gobbi, Alberto</au><au>Lakkaraju, Sirish Kaushik</au><au>Lucas, Xavier</au><au>Meier, Katharina</au><au>Mobley, David L.</au><au>Narayanan, Arjun</au><au>Schindler, Christina E. M.</au><au>Swope, William C.</au><au>in ’t Veld, Pieter J.</au><au>Wagner, Jeffrey</au><au>Xue, Bai</au><au>Tresadern, Gary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative Assessment of Molecular Geometries and Energies from the Open Force Field</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2022-12-12</date><risdate>2022</risdate><volume>62</volume><issue>23</issue><spage>6094</spage><epage>6104</epage><pages>6094-6104</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Force fields form the basis for classical molecular simulations, and their accuracy is crucial for the quality of, for instance, protein–ligand binding simulations in drug discovery. The huge diversity of small-molecule chemistry makes it a challenge to build and parameterize a suitable force field. The Open Force Field Initiative is a combined industry and academic consortium developing a state-of-the-art small-molecule force field. In this report, industry members of the consortium worked together to objectively evaluate the performance of the force fields (referred to here as OpenFF) produced by the initiative on a combined public and proprietary dataset of 19,653 relevant molecules selected from their internal research and compound collections. This evaluation was important because it was completely blind; at most partners, none of the molecules or data were used in force field development or testing prior to this work. We compare the Open Force Field “Sage” version 2.0.0 and “Parsley” version 1.3.0 with GAFF-2.11-AM1BCC, OPLS4, and SMIRNOFF99Frosst. We analyzed force-field-optimized geometries and conformer energies compared to reference quantum mechanical data. We show that OPLS4 performs best, and the latest Open Force Field release shows a clear improvement compared to its predecessors. The performance of established force fields such as GAFF-2.11 was generally worse. While OpenFF researchers were involved in building the benchmarking infrastructure used in this work, benchmarking was done entirely in-house within industrial organizations and the resulting assessment is reported here. This work assesses the force field performance using separate benchmarking steps, external datasets, and involving external research groups. This effort may also be unique in terms of the number of different industrial partners involved, with 10 different companies participating in the benchmark efforts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36433835</pmid><doi>10.1021/acs.jcim.2c01185</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8980-048X</orcidid><orcidid>https://orcid.org/0000-0002-8546-8096</orcidid><orcidid>https://orcid.org/0000-0003-0887-3976</orcidid><orcidid>https://orcid.org/0000-0002-5299-4145</orcidid><orcidid>https://orcid.org/0000-0001-8460-5688</orcidid><orcidid>https://orcid.org/0000-0003-2245-1956</orcidid><orcidid>https://orcid.org/0000-0002-4801-1644</orcidid><orcidid>https://orcid.org/0000-0003-1721-0330</orcidid><orcidid>https://orcid.org/0000-0003-1553-5780</orcidid><orcidid>https://orcid.org/0000-0002-1054-4701</orcidid><orcidid>https://orcid.org/0000-0003-0434-9237</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2022-12, Vol.62 (23), p.6094-6104 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9873353 |
source | ACS Publications; MEDLINE |
subjects | Benchmarks Computational Chemistry Consortia Datasets Industrial development Ligands Performance evaluation Physical Phenomena Proteins - chemistry Quantum mechanics Thermodynamics |
title | Collaborative Assessment of Molecular Geometries and Energies from the Open Force Field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20Assessment%20of%20Molecular%20Geometries%20and%20Energies%20from%20the%20Open%20Force%20Field&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=D%E2%80%99Amore,%20Lorenzo&rft.date=2022-12-12&rft.volume=62&rft.issue=23&rft.spage=6094&rft.epage=6104&rft.pages=6094-6104&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.2c01185&rft_dat=%3Cproquest_pubme%3E2754550378%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754550378&rft_id=info:pmid/36433835&rfr_iscdi=true |